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Abstract Refactoring large systems involves several sources of uncertainty related to the
severity levels of code smells to be corrected and the importance of the classes in which the
smells are located. Both severity and importance of identified refactoring opportunities (e.g.
code smells) are difficult to estimate. In fact, due to the dynamic nature of software develop-
ment, these values cannot be accurately determined in practice, leading to refactoring se-
quences that lack robustness. In addition, some code fragments can contain severe quality
issues but they are not playing an important role in the system. To address this problem, we
introduced a multi-objective robust model, based on NSGA-II, for the software refactoring
problem that tries to find the best trade-off between three objectives to maximize: quality
improvements, severity and importance of refactoring opportunities to be fixed. We evaluated
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our approach using 8 open source systems and one industrial project, and demonstrated that it
is significantly better than state-of-the-art refactoring approaches in terms of robustness in all
the experiments based on a variety of real-world scenarios. Our suggested refactoring solutions
were found to be comparable in terms of quality to those suggested by existing approaches,
better prioritization of refactoring opportunities and to carry an acceptable robustness price.

Keywords Search-basedsoftwareengineering.Refactoringunderuncertainty.Softwarequality
. Robust multi-objective optimization

1 Introduction

Software evolution is an essential component of software development process. It is mainly
intended to keep the software system up to the user’s requirements by regularly performing a set
of development activities linked to adding new features, fixing reported bugs, migrating to different
environments and platforms, and other function related tasks. Eventually. As a software system
evolves, the code-related changes tend to degrade the system’s structure as the evolution focuses
mainly on the incorporation of required features and the correction of errors on the expense of the
deterioration of the system’s design. Since these code changes have become inevitable as they
constitute a key-role in agile methodologies, strategies need to be adapted in order to preserve the
software architecture’s value over changes. Therefore, software maintenance gathers software
change control and management strategies that aim to maintain the software quality during its
evolution. On the other hand, the new functionalities, incorporated during the evolution of a
software system, exhibit a growth of its size and complexity and so it becomes harder to maintain.
As a consequence, the cost of maintenance and evolution activities comprises more than 80 % of
total software costs. In addition, it has been shown that software maintainers spend around 60% of
their time in understanding the code (Glass 2001). To facilitate maintenance tasks, one of the
widely used techniques is refactoring which can be defined as the restructuration of the system’s
architecture with the intention of improving its internal design while preserving the overall external
behavior of the software (Fowler et al. 1999).

Software refactoring, as an concept, has been introduced since the early nineties by Obdyke
(Opdyke 1992) and became a key artifact of the agile development processes such as Extreme
Programming (XP). Fowler (Fowler et al. 1999) has identified refactoring opportunities within
code fragments and provides a refactoring operations catalog that can be applied to enhance the
code’s structure of code while preserving its semantics. There has been much work on different
refactoring techniques and tools (Du Bois et al. 2004; Kessentini et al. 2011; O’Keeffe and Ó
Cinnéide 2008; Ouni et al. 2012; Seng et al. 2006). The vast majority of these techniques identify
key symptoms that characterize the code to refactor using a combination of quantitative, structural,
and/or lexical information and then propose different possible refactoring solutions, for each
identified segment of code. In order to find out which parts of the source code need to be
refactored, most of the existing work relies on the notion of design defects or code smells.
Originally coined by Fowler, the generic term code smell refers to structures in the code that
suggest the possibility of refactoring. Once code smells have been identified, refactorings need to
be proposed to resolve them. Several automated refactoring approaches are proposed in the
literature and most of them are based on the use of software metrics to estimate quality
improvements of the system after applying refactorings (Du Bois et al. 2004; Kessentini et al.
2011; O’Keeffe and Ó Cinnéide 2008; Ouni et al. 2012; Seng et al. 2006).
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Most of existing approaches propose refactoring solutions without a consideration of the
severity and importance of detected refactoring opportunities to fix. In fact, both severity and
importance are difficult to define and estimate. The estimation scores of these factors can
change during the time due to the highly dynamic nature of software development. The
importance and severity of code fragments can be different after new commits introduced by
developers. Thus, it is important to consider the uncertainty related to these two factors when
recommending refactoring solutions. In addition, the definition of severity and importance is
very subjective and depends on the developers’ perception.

In this paper, we take into account two dynamic aspects as follows:

& Code Smell Severity: Once a list of code smells is detected, the correction techniques treat
these detected defects equally by suggesting which refactorings could be applied to the
code in order to eliminate, or at least reducing them. Whereas, the effects of a defect in
terms of potential introduction of faults may vary depending on the type of the code smell
(Hall et al. 2014). Also, many studies has been investigating the impact of each defect type
on the maintenance effort (Yamashita 2012). Thus, we consider a severity level assigned to
a code smell type by a developer based on his prior knowledge and his preference on
prioritizing the correction of a specific type of code smell among others. This is the
severity level assigned to a code smell type by a developer. It usually varies from
developer to developer, and indeed a developer’s assessment of smell severity will change
over time as well.

& Code Smell Class Importance: This is the importance of a class that contains a code smell,
where importance refers to the number and size of the features that the class supports. A
code smell with large class importance will have a greater detrimental impact on the
software. Again, this property will vary over time as software requirements change
(Harman et al. 2012) and classes are added/deleted/extracted.

We believe that the uncertainties related to class importance and code smell severity need to
be taken into consideration when suggesting a refactoring solution. To this end, we introduce a
novel representation of the code refactoring problem, based on robust optimization (Beyer and
Sendhoff 2007; Jin and Branke 2005) that generates robust refactoring solutions by taking into
account the uncertainties related to code smell severity and the importance of the class that
contains the code smell. Our robustness model is based on the well-known multi-objective
evolutionary algorithm NSGA-II proposed by Deb et al. (Deb et al. 2002) and considers
possible changes in class importance and code smell severity by generating different scenarios
at each iteration of the algorithm. In each scenario, the detected code smell to be corrected is
assigned a severity score and each class in the system is assigned an importance score. In our
model, we assume that these scores change regularly due to reasons such as developers’
evolving perspectives on the software or new features and requirements being implemented or
any other code changes that could make some classes/code smells more or less important. Our
multi-objective approach aims to find the best trade-off between three objectives to maximize:
quality improvements (number of fixed code smells), severity and importance of refactoring
opportunities to be fixed (e.g. code smells).

The primary contributions of this paper are as follows:

& The paper introduces a novel formulation of the refactoring problem as a multi-objective
problem that takes into account the uncertainties related to code smell detection and the
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dynamic environment of software development. We extended our previous work
(Mkaouer et al. 2014) by considering severity and importance of refactoring opportunities
as separate objectives. In addition, we are considering additional types of code smells to fix
and extended our validation to 8 open source systems and one industrial project.

& The paper reports on the results of an empirical study of our robust NSGA-II technique as
applied different medium and large size systems. We compared our approach to random
search, multi-objective particle swarm optimization (MOPSO) (Li 2003), search-based
refactoring (Kessentini et al. 2011; O’Keeffe and Ó Cinnéide 2008) and a non-search-
based refactoring tool (Fokaefs et al. 2011). The results provide evidence to support the
claim that our proposal enables the generation of robust refactoring solutions without a
high loss of quality using a variety of real-world scenarios.

The remainder of this paper is structured as follows. Section 2 provides the background
required to understand our approach, the nature of the refactoring challenge and related work.
In Section 3, we describe robust optimization and explain how we formulate software
refactoring as a robust optimization problem. Section 4 presents and discusses the results
obtained by applying our approach to six large open-source projects. In Section 5 we conclude
and suggest future research directions.

2 Software Refactoring

2.1 Background and Challenges

A code-smell is defined as bad design choices that can have a negative impact on the code
quality such as maintainability, changeability and comprehensibility which could introduce
bugs (Yamashita 2012). Code-smells classify shortcomings in software that can decrease
software maintainability. They are also defined as structural characteristics of software that
may indicate a code or design problem that makes software hard to evolve and maintain, and
trigger refactoring of code (Fowler et al. 1999). Code-smells are not limited to design flaws
since most of them occur in code and are not related to the original design. In fact, most of
code-smells can emerge during the evolution of a system and represent patterns or aspects of
software design that may cause problems in the further development and maintenance of the
system. As stated by Brown et al. (Brown et al. 1998a), code-smells are unlikely to cause
failures directly, but may do it indirectly. In general, they make a system difficult to change,
which may in turn introduce bugs. It is easier to interpret and evaluate the quality of systems
by identifying code-smells than the use of traditional software quality metrics. In fact, most of
the definitions of code-smells are based on situations that are daily faced by developers. Most
of the code-smells identify locations in the code that violate object-oriented design heuristics,
such as the situations described by Riel (Riel 1996) and Coad et al. (Zhang et al. 2011). The 22
Code Smells identified and defined informally by Fowler (Fowler et al. 1999) aim to indicate
software refactoring opportunities and ‘give you indications that there is trouble that can be
solved by a refactoring’. Zhang et al. (Zhang et al. 2011) identified in their survey the code-
smells that attracted more attention in current literature.

Van Emden and Moonen (Van Emden and Moonen 2002) developed one of the first
automated code-smell detection tools for Java programs. Mantyla studied the manner of
how developers detect and analyse code-smells (Mäntylä and Lassenius 2006). Previous
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empirical studies have analysed the impact of code-smells on different software maintainability
factors including defects and effort (D’Ambros et al. 2010). In fact, software metrics (quality
indicators) are sometimes difficult to interpret and suggest some actions (refactoring) as noted
by Anda et al. (Anda 2007) andMarinescu et al. (Marinescu 2010). Code-smells are associated
with a generic list of possible refactorings to improve the quality of software systems. In
addition, Yamashita et al. (Yamashita and Moonen 2012) show that the different types of code-
smells can cover most of maintainability factors. Thus, the detection of code-smells can be
considered as a good alternative of the traditional use of quality metrics to evaluate the quality
of software products. Brown et al. (Brown et al. 1998b) define another category of code-smells
that are documented in the literature, and named anti-patterns.

In our experiments, we focus on the seven following code-smell types:

– Blob: It is found in designs where one large class monopolizes the behavior of a system
(or part of it), and the other classes primarily encapsulate data.

– Feature Envy (FE): It occurs when a method is more interested in the features of other
classes than its own. In general, it is a method that invokes several times accessor methods
of another class.

– Data Class (DC): It is a class with all data and no behavior. It is a class that passively store
data

– Spaghetti Code (SC): It is a code with a complex and tangled control structure.
– Functional Decomposition (FD): It occurs when a class is designed with the intent of

performing a single function. This is found in a code produced by non-experienced object-
oriented developers.

– Lazy Class (LC): A class that is not doing enough to pay for itself.
– Long Parameter List (LPL): Methods with numerous parameters are a challenge to

maintain, especially if most of them share the same data-type.

We choose these code-smell types in our work because of their high frequency, detection
difficulty (Palomba et al. 2013), cover different maintainability factors and also due to the
availability of code-smell instances in the studied projects. However, the proposed approach in
this paper is generic and can be applied to any type of code-smells.

To fix these code smells, the idea is to restructure variables, classes and methods to facilitate
future adaptations and extensions and enhance comprehension. This reorganization is used to
improve different aspects of software quality such as maintainability, extensibility, reusability,
etc. Some modern Integrated Development Environments (IDEs), such as Eclipse, NetBeans,
provide semi-automatic support for applying the most commonly used refactorings, e.g., move
method, rename class, etc. However, automatically suggesting/deciding where and which
refactorings to apply is still a real challenge in Software Engineering. In order to identify
which parts of the source code need to be refactored, most existing work relies on the notion of
code smells (e.g., Fowler’s textbook (Fowler et al. 1999)) as described previously.

Overall, there is no general consensus on how to decide if a particular code fragment
constitutes a code smell. There is also a distinction between detecting the symptoms of a code
smell and asserting that the code smell actually exists. For example, if one class in a system
implements all the system behavior while the other classes are purely data classes, then this
surely is an instance of the blob smell. Unfortunately, in real-life systems, matters are never so
clear, and deciding if a class is a blob or simply a large class depends heavily on the
interpretation of the developer making the decision. In some contexts, an apparent violation
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of a design principle may be consensually accepted as normal practice. For example, it is a
common and acceptable practice to have a class that maintains a log of events in a program.
However, as a large number of classes are coupled to it, it may be categorized as smelly. From
this discussion we can conclude that it is difficult to estimate the severity of detected code
smells since developers have divergent opinions on the topic.

Finally, detecting a large number of code smells in a system is not always helpful unless
something is known about the priority of the detected code smells. In addition to the presence
of false positives that may engender a rejection reaction in the developers, the process of
assessing the detected smells, selecting the true positives, and finally correcting them is long,
expensive, and not always profitable. Coupled with this, the priority ranking can change over
time based on the estimation of smell severity and class importance scores. To address these
issues, we describe in the next section our robust refactoring model based on an evolutionary
algorithm.

2.2 Related Work

In this section, we start by summarizing existing manual and semi-automated approaches to
software refactoring, then we focus on some studies related to use of search based software
engineering techniques (mono-objective and multi-objective optimization algorithms) to ad-
dress software refactoring problems. The refactoring process includes the identification of code
fragments to be refactored, i.e., bad smell detection (Zhang et al. 2011), and the determination
of which refactorings should be applied to the fragments (TomMens and Tourwe 2004). There
are a lot of work for supporting such activities.

The best-known work on manual refactoring is that of Martin Fowler’s (Fowler et al. 1999).
He provides a non-exhaustive list of code smells in source code, and, for each code smells, a
particular list of possible refactorings are suggested to be applied by software maintainers
manually. The first work on automated refactoring is that of Opdyke (Opdyke 1992), who
proposes the definition and the use of pre- and post-conditions with invariants to ensure that
refactorings preserve the behavior of the software. Behavior preservation is thus based on the
verification/satisfaction of a set of pre and post-conditions expressed in first-order logic. Opdyke’s
work has been the foundation for almost all subsequent automated refactoring approaches.

Most of the existing semi-automated approaches are based on quality metrics improvement
to deal with refactoring, Tsantails et al. (Tsantalis and Chatzigeorgiou 2009) proposed a
technique for detecting the opportunities of move method refactorings so that cohesion values
become higher preventing coupling values from rising. Kerievsky (Kerievsky 2004) also
proposed smells and refactorings for introducing design patterns. It is prefer- able to improve
method assignment as early as possible, not in the step of source code level but design because
of avoiding rework of development activities in later steps. Marinescu et al. (Radu 2004)
presented a metric-based approach to identify smells with detection strategies, which capture
deviations from good design principles and consist of combining metrics with set operators
and comparing their values against absolute and relative thresholds. Oliveto et al. (Oliveto
et al. 2010) proposed a method to identify occurrences of antipatterns (Brown et al. 1998c)
based on numerical analysis of metric values. Moha et al. (Moha et al. 2010) proposed
DECOR method and DETEX technique (Moha et al. 2010) to specify and automatically
generate identification algorithms for code/design smells based on metrics and structural
characteristics. They showed the detection performance of 19 automatic generated algorithms
by DETEX. These approaches are rule- based whereas our technique uses search-based
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optimization. Zamani et al. (Zamani and Butler 2009) proposed a method to analyze a UML
model using the in- formation on stereotypes and checks a smell whether enterprise architec-
tural patterns (EAA patterns) are applied correctly to the model or not. In (Sunye et al. 2001),
model refactoring on UML class and state diagrams is formalized as a sequence of transfor-
mation operations defined in OCL. Trifu et al. (Trifu and Reupke 2007) discussed relationship
between a smell and the number of directly observable indicators. They defined specifications
of the design flaw including context and indicators, and a diagnosis strategy using indicators
and correction strategies written in a natural language. They also presented a tool to identify
design flaws. Their indicators for design flaw identification are defined as a combination of
design metrics and structural information. ClassCompass (Coelho and Murphy 2007), which is
an automated software de- sign critique system, has a feature to suggest design correction
based on rules written in a natural language. Sahraoui et al. (Sahraoui et al. 2000) propose an
approach to detect opportunities of code transformations (i.e., refactorings) based on the study
of the correlation between certain quality metrics and refactoring changes. To this end,
different rules are defined as a combination of metrics/thresholds to be used as indicators for
detecting code smells and refactoring opportunities. For each code smell a pre-defined and
standard list of transformations are applied in order to improve the quality of the code. Other
contributions in this field are based on rules that can be expressed as assertions (invariants, pre
and post-condition), e.g., Kataoka et al. (Kataoka et al. 2001) use of invariants to detect parts
of program that require refactoring. Compared with these approaches and tools, our approach
is search-based and then does not require users and developers to define detection rules.

To fully automate refactoring activities, new approaches have emerged that use search-
based techniques (SBSE) (Marinescu 2010) to guide the search for better designs. These
approaches cast refactoring as an optimization problem, where the goal is to improve the
design quality of a system based mainly on a set of software metrics. After formulating
refactoring as an optimization problem, several different techniques can be applied for
automating refactoring, e.g., genetic algorithms, simulated annealing, and Pareto optimality,
etc. Hence, we classify those approaches into two main categories: mono-objective and multi-
objective optimization approaches.

In the first category of mono-objective approaches, the majority of existing work combines
several metrics in a single fitness function to find the best sequence of refactorings. Seng et al.
(Seng et al. 2006) propose a single-objective optimization based-approach using genetic
algorithm to suggest a list of refactorings to improve software quality. The search process
uses a single fitness function to maximize a weighted sum of several quality metrics. Closely
related work is that of O’Keeffe and Ó Cinnéide (O’Keeffe and Ó Cinnéide 2008) where
different local search-based techniques such as hill climbing and simulated annealing are used
to implement automated refactoring guided by the QMOOD metrics suite (Bansiya and Davis
2002). In a more recent extension of their work, the refactoring process is guided not just by
software metrics, but also by the design that the developer wishes the program to have
(Moghadam and Ó Cinnéide 2012).

Fatiregun et al. (Coad and Yourdon 1991) showed how search-based transformations can be
used to reduce code size and construct amorphous program slices. In recent work, Kessentini
et al. (Kessentini et al. 2011) propose single-objective combinatorial optimization using a
genetic algorithm to find the best sequence of refactoring operations that improve the quality of
the code by minimizing as much as possible the number of design defects detected on the
source code. Jensen et al. (Jensen and Cheng 2010) propose an approach that supports
composition of design changes and makes the introduction of design patterns a primary goal
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of the refactoring process. They use genetic programming and the QMOOD software metric
suite (Bansiya and Davis 2002) to identify the most suitable set of refactorings to apply to a
software design. Harman et al. (Harman and Tratt 2007) propose a search-based approach
using Pareto optimality that combines two quality metrics, CBO (coupling between objects)
and SDMPC (standard deviation of methods per class), in two separate fitness functions. The
authors start from the assumption that good design quality results from good distribution of
features (methods) among classes. Ó Cinnéide et al. (Ó Cinnéide et al. 2012) use multi-
objective search-based refactoring to conduct an empirical investigation to assess structural
cohesion metrics and to explore the relationships between them. Bavota et al. (Palomba et al.
2013) proposed an interactive optimization approach for software remodularization. However,
the study of Bavota et al. was mainly limited to refactorings at the package level
(remodularization) and did not consider the severity and importance of code smells. In
addition, the approach of Bavota et al. requires more interactions with the user than our
approach since it is based on interactive optimization.

According to a recent SBSE survey (Harman et al. 2012), robustness has been taken into
account only in two software engineering problems: the next release problem (NRP) and the
software management/planning problem. Paixao et al. (Esteves Paixao and De Souza 2013)
propose a robust formulation of NRP where each requirement’s importance is uncertain since
the customers can change it at any time (Riel 1996). In work by Antoniol et al. (Antoniol et al.
2004), the authors propose a robust model to find the best schedule of developers’ tasks where
different objectives should be satisfied, robustness is considered as one of the objectives to
satisfy (Gueorguiev et al. 2009). In this paper, for the first time, we have considered robustness
as a separate objective in its own right.

3 Multi-objective Robust Software Refactoring

3.1 Robust Optimization

In dealing with optimization problems, including software engineering ones, most researchers
assume that the parameters of the problem are exactly known in advance. Unfortunately, this is
an idealization often not the case in a real-world setting. Additionally, uncertainty can change
the effective values of some parameters with respect to nominal values. For instance, when
handling the knapsack problem (KP), which is one of the most studied combinatorial problems
(Beyer and Sendhoff 2007), we can face such a problem. The KP problem requires one to find
the optimal subset of items to put in a knapsack of capacity C in order to maximize the total
profit while respecting the capacity C. The items are selected from an item set where each item
has its own weight and its own profit. Usually, the KP’s input parameters are not known with
certainty in advance. Consequently, we should search for robust solutions that are immune to
small perturbations in terms of input parameter values. In other words, we prefer solutions
whose performance levels do not significantly degrade due to small perturbations in one or
several input parameters such as item weights, item profits and knapsack capacity for a KP. As
stated by Beyer et al. (Beyer and Sendhoff 2007), uncertainty is unavoidable in real problem
settings; therefore it should be taken into account in every optimization approach in order to
obtain robust solutions. Robustness of an optimal solution can usually be discussed from the
following two perspectives: (1) the optimal solution is insensitive to small perturbations in
terms of the decision variables and/or (2) the optimal solution is insensitive to small variations
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in terms of environmental parameters. Figure 1 illustrates the robustness concept with respect
to a single decision variable named x. Based on the f (x) landscape, we have two optima: A and
B. We remark that solution A is very sensitive to local perturbation of the variable x. A very
slight perturbation of x within the interval (Fowler et al. 1999; Du Bois et al. 2004) can make
the optimum A unacceptable since its performance f(A) would dramatically degrade. On the
other hand, small perturbations of the optimum B, which has a relatively lower objective
function value than A, within the interval (Kessentini et al. 2011; Ouni et al. 2012) hardly
affects the performance of solution B (i.e., f(B)) at all. We can say that although solution A has
a better quality than solution B, solution B is more robust than solution A. In an uncertain
context, the user would probably prefer solution B to solution A. This choice is justified by the
performance of B in terms of robustness. It is clear from this discussion robustness has a price,
called robustness price or cost, since it engenders a loss in optimality. This loss is due to
preferring the robust solution B over the non-robust solution A. According to Fig. 1, this loss is
equal to abs(f(B)− f(A)). Several approaches have been proposed to handle robustness in the
optimization field in general and more specifically in design engineering. These approaches
can be classified as follows (Jin and Branke 2005):

& Explicit averaging: Assuming f(x) to be the fitness function of solution x, the basic idea is
to weighted average the fitness value in the neighborhood Bδ(x) of solution x with a

uncertainty distribution p(δ). The fitness function then becomes: ∫
δ∈Bδ xð Þ

p δð Þ f xþ δð Þ dδ

However, because in the robustness term, case disturbances can be chosen deliberately, variance
reduction techniques can be applied, allowing a more accurate estimation with fewer samples.

& Implicit averaging: The basic idea is to compute an expected fitness function based on the
fitness values of some solutions residing within the neighborhood of the considered
solution. Beyer et al. (Beyer 2004) noted that it is important to use a large population size
in this case. In fact, given a fixed number of evaluations per generation, it was found that
increasing the population size yields better results than multiple random sampling.

& Use of constraints: The difference between the weighted average fitness value and the
actual fitness value at any point can be restricted to lie within a pre-defined threshold

Fig. 1 Illustration of the
robustness concept under
uncertainty related to the decision
variable x. Solution B is more
robust than solution A
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in order to yield more robust solutions (Das 2000). Such an optimization process will
prefer robust solutions to the problem and it then depends on the efficacy of the
optimization algorithm to find the highest quality robust solution.

& Multi-objective formulation: The core idea in the multi-objective approach is to use an
additional helper objective function that handles robustness related to uncertainty in
the problem’s parameters and/or decision variables. Thus we can solve a mono-
objective problem by means of a multi-objective approach by adding robustness as
a new objective to the problem at hand. The same idea could be used to handle
robustness in a multi-objective problem; however in this case the problem’s dimen-
sionality would increase. Another reason to separate fitness from robustness is that
using the expected fitness function as a basis for robustness is not sufficient in some
cases (Jin and Sendhoff 2003). With expected fitness as the only objective, positive
and negative deviations from the true fitness can cancel each other in the neighbor-
hood of the considered solution. Thus, a solution with high fitness variance may be
wrongly considered to be robust. For this reason, it may be advantageous to consider
expected fitness and fitness variance as separate additional optimization criteria,
which allows searching for solutions with different trade-offs between performance
and robustness.

Robustness has a cost in terms of the loss in optimality, termed the price of
robustness, or sometimes robustness cost. This is usually expressed as the ratio
between the gain in robustness and the loss in optimality. Robustness handling
methods have been successfully applied in several engineering disciplines such as
scheduling, electronic engineering and chemistry (cf. (Beyer and Sendhoff 2007) for a
comprehensive survey).

3.2 Multi-objective Robust Optimization for Software Refactoring

3.2.1 Problem Formulation

The refactoring problem, from search-based perspective, includes the exploration of a
set of candidate solutions in order to determine the best one whose sequence of
refactorings best satisfies the fitness function(s). A refactoring solution is a set of
refactoring operations where the goal of applying the sequence to a software system S
is typically to minimize the number of design defects in S. As outlined in the
Introduction, in a real-world setting code smell severity and class importance are
not certainties. A refactoring sequence that resolves the smells that one developer
rates as severe may not be viewed as effective by another developer with a different
outlook on smells. Similarly, a refactoring sequence that fixes the smells in a class
that is subsequently deleted in the next commit is not of much value (Chatzigeorgiou
and Manakos 2013).

We propose a robust formulation of the refactoring problem that separates class
importance and smell severity into two different objectives. Consequently, we have three
objective functions to be maximized in our problem formulation: (1) the quality of the
system to refactor, i.e., minimizing the number of code smells, and the robustness of the
refactoring solutions in relation to uncertainty in both (2) severity level of the code
smells and (3) the importance of the classes that contain the code smells.
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Analytically speaking, the formulation of the robust refactoring problem can be stated as
follows:

Maximize
f 1 x; Sð Þ ¼ NCCS x; Sð Þ=NDCS Sð Þ

f 2 x; Sð Þ ¼
XNCCS x;Sð Þ

i¼1

SmellSeverity CCSi; x; Sð Þ

f 3 x; Sð Þ ¼
XNCCS x;Sð Þ

i¼1

ClassImportance CCSi; x; Sð Þ

8
>>>>>>><

>>>>>>>:

subject to x ¼ x1;…; xnð Þ∈X
where X is the set of all legal refactoring sequences starting from S, xi is the i

th refactoring in
the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after applying the
refactoring solution x on the system S, NDCS(S) is the Number of Detected Code-Smells prior
to the application of solution x to the system S, CCSi is the ith Corrected Code Smell,
SmellSeverity(CCSi, x, S) is the severity level of the ith corrected code smell related to the
execution of x on S, and ClassImportance(CCSi, x, S) is the importance of the class containing
the ith code smell corrected by the execution of x on S.

The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned by the
developer to each code smell type (e.g., blob, spaghetti code, functional decomposition, etc.).
We define the class importance of a code smell as follows:

Importance CCSi; x; Sð Þ ¼ NC=MaxNC Sð Þð Þ þ NR=MaxNR Sð Þð Þ þ NM=MaxNM Sð Þð Þ
3

such that NC/NR/NM correspond respectively to the Number of Comments/Relationships/
Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond respectively to the
Maximum Number of Comments/Relationships/Methods of any class in the system S. There
are of course many ways in which class importance could be measured, and one of the
advantages of the search-based approach is that this definition could be easily replaced with a
different one. We used in our approach the widely used metrics by existing literature to
estimate the importance and severity of code smells (Olbrich et al. 2010). In fact, few empirical
studies were performed with software engineers to evaluate the severity and importance of
several types of code smells (Olbrich et al. 2010; Fontana et al. 2015). We are taking these
metrics and the severity scores as input for our approach.

In summary, the basic idea behind this work is to maximize the resistance of the refactoring
solutions to perturbations in the severity levels and class importance of the code smells while
maximizing simultaneously the number of corrected code smells. These three objectives are in
conflict with each other since the quality of the proposed refactoring solution usually decreases
when the environmental change (smell severity and/or class importance) increases. In addition,
severe quality issues may exist in code fragments that are not important for developers. Thus,
the goal is to find a good compromise between these three conflicting objectives. This
compromise is directly related to robustness cost, as discussed above. In fact, once the three
objectives trade-off front is obtained, the developer can navigate through this front in order to
select his/her preferred refactoring solution. This is achieved through sacrificing some degree
of solution quality while gaining in terms of robustness and smell severity and importance. In
fact, robustness is inversely proportional to the severity and class importance, and this is how
we make our algorithm robust. The approach is to use a multi-objective search algorithm to
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explore the trade-off that can be obtained by ignoring the user’s wishes to varying degrees. The
results show this to be the case; quality can be most improved when importance and severity
objective values are lower. For example, a refactoring applied to a class that is then deleted; the
instantaneous quality improvement may be high, but in the project’s timeline it is minimal.
This makes a solid case for so-called “robust” optimization which seeks to identify good
solutions that are resilient against changes in the developer’s priorities.

In our robust formulation, we introduce “perturbations/variations” in the severity and
importance scores of the code smells and classes at every iteration of our NSGA-II algorithm.
As described later in the experiments section, the severity scores of 0.8, 0.6, 0.4, 0.3, 0.5, 0.3,
and 0.2 of the different types of code represent just the initial values but these values slightly
change at each iteration (a slight random increase or decrease of these scores using a variation
rate parameter). These variations correspond to some artificially created changes in the
environment (new code changes introduced, etc.) or priorities change or a different opinions
of developers about the importance or severity of the classes.

3.2.2 The Solution Approach

Solution representation To represent a candidate solution (individual/chromosome), we use
a vector-based representation which is widely adopted in the literature. According to this
encoding, a solution is an array of refactoring operations where the order of their execution is
accorded by their positions in the array. The standard approach of pre- and post-conditions, is
used to ensure that the refactoring operation can be applied while preserving program
behaviour. For each refactoring operation, a set of controlling parameters (e.g., actors and
roles as illustrated in Table 1) is randomly picked from the program to be refactored. Assigning
randomly a sequence of refactorings to certain code fragments generates the initial population.
An example of a solution is given in Fig. 2 containing 3 refactorings. To apply a refactoring
operation we need to specify which actors, i.e., code fragments, are involved/impacted by this
refactoring and which roles they play to perform the refactoring operation. An actor can be a
package, class, field, method, parameter, statement or variable. Table 1 depicts, for each
refactoring, its involved actors and its role.

Solution variation For crossover, we use the one-point crossover operator. It starts by
selecting and splitting at random two parent solutions. Then, this operator creates two child
solutions by putting, for the first child, the first part of the first parent with the second part of the
second parent, and vice versa for the second child. This operator must respect the refactoring
sequence length limits by eliminating randomly some refactoring operations if necessary. For
mutation, we use the bit-string mutation operator that picks probabilistically one or more
refactoring operations from its or their associated sequence and replaces them by other ones
from a list of possible refactorings. These two variation operators have already demonstrated
good performance when tackling the refactoring problem (Ouni et al. 2012; Seng et al. 2006).

Solution evaluation Each refactoring sequence in the population is executed on the
system S. For each sequence, the solution is evaluated based on the three objective
functions defined in the previous section. Since we are considering a three objectives
formulation, we use the concept of Pareto optimality to find a set of compromise (Pareto-
optimal) refactoring solutions. By definition, a solution x Pareto-dominates a solution y if
and only if x is at least as good as y in all objectives and strictly better than y in at least
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one objective. The fitness of a particular solution in NSGA-II (Deb et al. 2002)
corresponds to a couple (Pareto Rank, Crowding distance). In fact, NSGA-II classifies
the population individuals (of parents and children) into different layers, called non-
dominated fronts. Non-dominated solutions are assigned a rank of 1 and then are
discarded temporary from the population. Non-dominated solutions from the truncated
population are assigned a rank of 2 and then discarded temporarily. This process is
repeated until the entire population is classified with the domination metric. After that, a
diversity measure, called crowding distance, is assigned front-wise to each individual.
The crowding distance is the average side length of the cuboid formed by the nearest
neighbors of the considered solution. Once each solution is assigned its Pareto rank,
based on refactoring quality and robustness to change in terms of class importance and
smell severity levels, in addition to its crowding distance, mating selection and environ-
mental selection are performed. This is based on the crowded comparison operator that
favors solutions having better Pareto ranks and, in case of equal ranks, it favors the
solution having larger crowding distance. In this way, convergence towards the Pareto
optimal bi-objective front (quality, robustness) and diversity along this front are empha-
sized simultaneously. The basic iteration of NSGA-II consists in generating an offspring

Table 1 Refactoring types and
their involved actors and roles Refactorings Actors Roles

Move method class source class, target class

method moved method

Move field class source class, target class

field moved field

Pull up field class sub classes, super class

field moved field

Pull up method class sub classes, super class

method moved method

Push down field class super class, sub classes

field moved field

Push down method class super class, sub classes

method moved method

Inline class class source class, target class

Extract class class source class, new class

field moved fields

method moved methods

Move class package source package, target package

class moved class

Extract interface class source classes, new interface

field moved fields

method moved methods

Inline_Class (Student, Person)
Pull_Up_Method (salary, Professor, Person)
Move_Method (grade, Registration, Student)

Fig. 2 A sample refactoring solution
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population (of size N) from the parent one (of size N too) based on variation operators
(crossover and mutation) where the parent individuals are selected based on the crowded
comparison operator. After that, parents and children are merged into a single population
R of size 2N. The parent population for the next generation is composed of the best non-
dominated fronts. This process continues until the satisfaction of a stopping criterion.
The output of NSGA-II is the last obtained parent population containing the best of the
non-dominated solutions found. When plotted in the objective space, they form the
Pareto front from which the developer will select his/her preferred refactoring solution.

4 Design of the Empirical Study

This section describes our empirical study including the research questions to address, the
systems examined, evaluation metrics considered in our experiments and the statistical tests
results. In addition, we compared different refactoring algorithms quantitatively and qualita-
tively across several subject systems.

4.1 Research Questions and Systems Studied

We defined six research questions that address the applicability, performance in comparison to
existing refactoring approaches, and the usefulness of our robust multi-objective refactoring.
The six research questions are as follows:

RQ1: Search Validation To validate the problem formulation of our approach, we
compared our NSGA-II formulation with Random Search. If Random Search outper-
forms an intelligent search method thus we can conclude that our problem formulation
is not adequate.

Since outperforming a random search is not sufficient, the next four questions are related to
the comparison between our proposal and the state-of-the-art refactoring approaches.

RQ2.1: How does NSGA-II perform compared to other multi-objective algorithms?
It is important to justify the use of NSGA-II for the problem of refactoring under uncertainties.
We compare NSGA-II with another widely used multi-objective algorithm, MOPSO (Multi-
Objective Particle Swarm Optimization), (Li 2003) using the same adaptation (fitness func-
tions). In addition, we compared our approach with our previous SSBSE2014 robust
refactoring study (based on only 2 objectives) (Mkaouer et al. 2014).

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-
objective Evolutionary Algorithms? A multi-objective algorithm provides a trade-off
between the two objectives where the developers can select their desired solution from the
Pareto-optimal front. A mono-objective approach uses a single fitness function that is
formed as an aggregation of both objectives and generates as output only one
refactoring solution. This comparison is required to ensure that the refactoring solu-
tions provided by NSGA-II and MOPSO provide a better trade-off between quality
and robustness than a mono-objective approach. Otherwise, there is no benefit to our
multi-objective adaptation.
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RQ2.3: How does NSGA-II perform compare to existing search-based refactoring
approaches? Our proposal is the first work that treats the problem of refactoring under
uncertainties. A comparison with existing search-based refactoring approaches (Kessentini
et al. 2011; O’Keeffe and Ó Cinnéide 2008) is helpful to evaluate the cost of robustness of our
proposed approach.

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches
not based on the use of metaheuristic search?While it is very interesting to show that our
proposal outperforms existing search-based refactoring approaches, developers will consider
our approach useful, if it can outperform other existing refactoring tools (Fokaefs et al. 2011)
that are not based on optimization techniques.

RQ3: Developers’ evaluation of the recommended refactorings. Can our robust
multi-objective approach be useful for software engineers in real-world setting? In
a real-world problem involving uncertainties, it is important to show that a robustness-unaware
methodology drives the search to non-robust solutions that are sensitive to variation in the
uncertainty parameters. However when robustness is taken into account, a more robust and
insensitive solution is found. Some scenarios are required to illustrate the importance of robust
refactoring solutions in a real-world setting: a) exploring the trade-off of robust and qualitative
solutions; and b) asking what developers think of the results.

4.2 Software Projects Studied

In our experiments, we used a set of well-known and well-commented open-source Java
projects. We applied our approach to eight large and medium sized open source Java
projects: Xerces-J (Xerces J Online Available http://xerces.apache.org/xerces-j),
JFreeChart (JFreeChart Online Available http://www.jfree.org/jfreechart/), GanttProject
(GanttProject Online Available http://www.ganttproject.biz), ApacheAnt (ApacheAnt
Online Available http://ant.apache.org), JHotDraw (JHotDraw Online Available http://
www.jhotdraw.org), Rhino (Rhino Online Available https://developer.mozilla.org/en-US/
docs/Rhino/), Log4J (Log4J Online Available http://logging.apache.org/), Nutch (Nutch
Online Available http://nutch.sourceforge.net/) and JDI-Ford. Xerces-J is a family of
software packages for parsing XML. JFreeChart is a powerful and flexible Java library
for generating charts. GanttProject is a cross-platform tool for project scheduling.
ApacheAnt is a build tool and library specifically conceived for Java applications.
JHotDraw is a GUI framework for drawing editors. Rhino is a JavaScript interpreter
and compiler written in Java and developed for the Mozilla/Firefox browser. Nutch is an
open source Java implementation of a search engine. Log4j is a Java-based logging
utility. Table 2 provides some descriptive statistics about these eight programs. We
selected these systems for our validation because they range from medium to large-
sized open source projects that have been actively developed over the past 10 years, and
include a large number of code smells. In addition, these systems are well studied in the
literature and their code smells have been either detected and analyzed manually
(Kessentini et al. 2011; O’Keeffe and Ó Cinnéide 2008; Ouni et al. 2012) or using an
existing detection tool (Radu 2004). In these corpuses, the four following code smell
types were identified manually (that are described in Section 2): Blob, Feature Envy (FE)
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, Data Class (DC), Spaghetti Code (SC), Functional Decomposition (FD), Lazy Class
(LC) and Long Parameter List (LPL). We chose these code smell types in our experi-
ments because they are the most frequent ones detected and corrected in recent studies
and existing corpuses.

We performed also a small industrial case study, based on one industrial project JDI-
Ford. It is a Java-based software system that helps, our industrial partner, the Ford Motor
Company, analyzes useful information from the past sales of dealerships data and
suggests which vehicles to order for their dealer inventories in the future. This system
is the main key software application used by the Ford Motor Company to improve their
vehicle sales by selecting the right vehicle configuration to the expectations of cus-
tomers. Several versions of JDI were proposed by software engineers at Ford during the
past 10 years. Due to the importance of the application and the high number of updates
performed during a period of 10 years, it is critical to make sure that all the JDI releases
are within a good quality to reduce the time required by developers to introduce new
features in the future. The software engineers from Ford manually evaluated the sug-
gested refactorings based on their knowledge of the system since they are some of the
original developers.

4.3 Evaluation Metrics Used

When comparing two mono-objective algorithms, it is usual to compare their best
solutions found so far during the optimization process. However, this is not applicable
when comparing two multi-objective evolutionary algorithms since each of them gives
as output a set of non-dominated (Pareto equivalent) solutions. For this reason, we
defined the following metrics:

– Hypervolume (IHV) corresponds to the proportion of the objective space that is dominated
by the Pareto front approximation returned by the algorithm and delimited by a reference
point. Larger values for this metric mean better performance. The most interesting features
of this indicator are its Pareto dominance compliance and its ability to capture both
convergence and diversity. The reference point used in this study corresponds to the nadir
point of the Reference Front (RF), where the Reference Front is the set of all non-
dominated solutions found so far by all algorithms under comparison.

Table 2 Software studied in our experiments

Systems Release #Classes #Smells KLOC

Xerces-J v2.7.0 991 82 240

JFreeChart v1.0.9 521 73 170

GanttProject v1.10.2 245 56 41

ApacheAnt v1.8.2 1191 91 255

JHotDraw v6.1 585 33 21

Rhino v1.7R1 305 74 42

Log4J v1.2.1 189 64 31

Nutch v1.1 207 72 39

JDI-Ford v5.8 638 88 247
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– Inverse Generational Distance (IGD) is a convergence measure that corresponds to the
average Euclidean distance between the Pareto front Approximation PA provided by the
algorithm and the reference front RF. The distance between PA and RF in an M-objective
space is calculated as the average M-dimensional Euclidean distance between each
solution in PA and its nearest neighbour in RF. Lower values for this indicator mean
better performance (convergence).

– Contribution (IC) corresponds to the ratio of the number of non-dominated solutions the
algorithm provides to the cardinality of RF. Larger values for this metric mean better
performance.

In addition to these three multi-objective evaluation measures, we used these other metrics
mainly to compare between mono-objective and multi-objective approaches defined as
follows:

– Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed after
applying the best refactoring solution.

– Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed code
smells:

SCS Sð Þ ¼
Xk

i¼1

SmellSeverity dið Þ

where k is the number of fixed code smells and SmellSeverity corresponds to the
severity (value between 0 and 1) assigned by the developer to each code smell type
(blob, spaghetti code, etc.). In our experiments, we use these severity scores 0.8, 0.6,
0.4, 0.3, 0.5, 0.3, and 0.2 respectively for Blob, Spaghetti Code (SC), Functional
Decomposition (FD), Lazy Class (LC), Feature Envy (FE), Data Class (DC) and Long
Parameter List (LPL). We introduce “perturbations/variations” in the severity and
importance scores of the code smells and classes at every iteration of our NSGA-II
algorithm. Thus, these severity scores of the different types of code represent just the
initial values but these values slightly change at each iteration (a slight random increase
or decrease of these scores using a variation rate parameter between −0.2 and +0.2).

– Importance of fixed Code-Smells (ICS) is defined using three metrics (number of com-
ments, number of relationships and number of methods) as follows:

ICS Sð Þ ¼
Xk

i¼1

importance dið Þ

where importance is as defined in Section 3.2.1.

– Correctness of the suggested Refactorings (CR) is defined as the number of semantically
correct refactorings divided by the total number of manually evaluated refactorings.

– Computational time (ICT) is a measure of efficiency employed here since robustness
inclusion may cause the search to use more time in order to find a set of Pareto-optimal
trade-offs between refactoring quality and solution robustness.
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When we compared the different algorithms to NSGA-II, we used the original initial
weights (before the perturbation).

4.4 Subjects

Our study involved 6 subjects from the University of Michigan and 4 software engineers from
Ford Motor Company. Subjects include 1 master student in Software Engineering, 4 Ph.D.
students in Software Engineering, 1 faculty member in Software Engineering, 3 junior
software developers and 1 senior projects manager. All the subjects are familiar with Java
development, software maintenance activities including refactoring. The experience of these
subjects on Java programming ranged from 3 to 17 years. All the graduate students have an
industrial experience of at least 2 years with large-scale object-oriented systems. The 6 subjects
from the University of Michigan evaluated the refactoring results on the open source systems.
The 4 software engineers from Ford evaluated the refactoring results only on the JDI-Ford
system. They were selected, as part of a project funded by Ford, based on having similar
development skills, their motivations to participate in the project and their availability. They
are part of the original developers’ team of the JDI system.

4.5 Parameter Tuning and Setting

An often-omitted aspect in metaheuristic search is the tuning of algorithm parameters. In fact,
parameter setting influences significantly the performance of a search algorithm on a particular
problem. For this reason, for each multi-objective algorithm and for each system (cf. Table 3),
we performed a set of experiments using several population sizes: 50, 100, 200, 500 and 1000.
The stopping criterion was set to 250,000 fitness evaluations for all algorithms in order to
ensure fairness of comparison. Each algorithm was executed 51 times with each configuration
and then comparison between the configurations was performed based on IHV, IGD and IC
using the Wilcoxon test. Table 3 reports the best configuration obtained for each couple
(algorithm, system). For the mono-objective EA, we adopted the same approach using best
fitness value criterion since multi-objective metrics cannot be used for single-objective
algorithms. The best configurations are also shown in Table 3.

TheMOPSO used in this paper is the Non-dominated Sorting PSO (NSPSO) proposed by Li
(Li 2003). The other parameters’ values were fixed by trial and error and are as follows: (1)
crossover probability=0.8; mutation probability=0.5 where the probability of gene modifica-
tion is 0.3; stopping criterion=250,000 fitness evaluations. For MOPSO, the cognitive and
social scaling parameters c1 and c2 were both set to 2.0 and the inertia weighting coefficient w
decreased gradually from 1.0 to 0.4. Since refactoring sequences usually have different lengths,
we authorized the length n of number of refactorings to belong to the interval [10, 250].

4.6 Approaches Compared

We compared our approach with different existing studies. For the mono-objective approaches,
Kessentini et al. (Kessentini et al. 2011) used genetic algorithms to find the best sequence of
refactoring that minimizes the number of code smells while O’Keeffe and Ó Cinnéide (O’Keeffe
and Ó Cinnéide 2008) used different mono-objective algorithms to find the best sequence of
refactorings that optimize a fitness function composed of a set of quality metrics. Kessentini et al.
(Kessentini et al. 2011) and O’Keeffe et al. (O’Keeffe and Ó Cinnéide 2008), where uncertainties
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are not taken into account. We also implemented a mono-objective Genetic Algorithm where one
fitness function is defined as an average of the three objectives (quality, severity and importance).
For the multi-objective algorithms, in Ouni et al.(Ouni et al. 2012), the authors ask a set of
developers to fixmanually the code smells in a number of open source systems including those that
we are considering in our experiments. They proposed a multi-objective approach to maximize the
number of fixed defects and minimize the number of refactorings.We also compared our approach
with our previous SSBSE2014 robust refactoring study (based on only 2 objectives) (Mkaouer
et al. 2014) as described in the introduction. In addition, we compared our proposal to a popular
design defects detection and correction tool JDeodorant (Tsantalis and Chatzigeorgiou 2009) that
does not use heuristic search techniques. The current version of JDeodorant is implemented as an
Eclipse plug-in that identifies some types of design defects using quality metrics and then proposes
a list of refactoring strategies to fix them.

4.7 Results Analysis

This section describes and discusses the results obtained for the different research questions of
Section 4.1. Since metaheuristic algorithms are stochastic optimizers, they can provide
different results for the same problem instance from one run to another. For this reason, our
experimental study is performed based on 51 independent simulation runs for each problem
instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum test
with a 95 % confidence level (α=5 %). The latter verifies the null hypothesis H0 that the
obtained results of two algorithms are samples from continuous distributions with equal
medians, as against the alternative that they are not, H1. The p-value of the Wilcoxon test
corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I error).
A p-value that is less than or equal to α (≤0.05) means that we accept H1 and we reject H0.
However, a p-value that is strictly greater than α (>0.05) means the opposite. In fact, for each
problem instance, we compute the p-value of random search, MOPSO and mono-objective
search results, our previous multi-objective work (Mkaouer et al. 2014) with NSGA-II ones. In
this way, we could decide whether the outperformance of NSGA-II over one of each of the
others (or the opposite) is statistically significant or just a random result. The inference on the
best result is done on the basis of ranking through multiple pair-wise tests.

The Wilcoxon signed-rank test allows verifying whether the results are statistically different
or not. However, it does not give any idea about the difference in magnitude. To this end, we

Table 3 Best population size configurations

System NSGA-II MOPSO Mono-EA

Xerces-J 1000 1000 1000

JFreeChart 500 200 500

GanttProject 100 100 100

ApacheAnt 1000 1000 1000

JHotDraw 200 200 200

Rhino 100 200 200

Log4J 200 200 100

Nutch 100 200 150

JDI-Ford 500 600 460
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used the Vargha and Delaney’s A statistics which is a non-parametric effect size measure
(Vargha and Delaney 2000; Arcuri and Lionel 2011). In our context, given the different
performance metrics (such as FCS, SCS and ICS), the A statistics measures the probability
that running an algorithm B1 (our robust multi-objective algorithm) yields better performance
than running another algorithm B2 (such as random search and MOPSO). If the two algorithms
are equivalent, then A=0.5. In our experiments, we have found the following results: a) On
small and medium scale Software systems (JFreeChart and GanttProject) NSGA-II is better
than all the other algorithms based on all the performance metrics with an A effect size higher
than 0.9; b) On large scale Software systems (Xerces-J and JDI-Ford), NSGA-II is better than
all the other algorithms with a an A effect size higher than 0.83.

4.7.1 Results for RQ1: Comparison Between NSGA-II and Random Search

To answer the first research question RQ1 an algorithm was implemented where refactorings
were randomly applied at each iteration. The obtained Pareto fronts were compared for
statistically significant differences with NSGA-II using IHV, IGD and IC.

We do not dwell long in answering the first research question, RQ1, that involves
comparing our approach based on NSGA-II with random search. The remaining research
questions will reveal more about the performance, insight, and usefulness of our approach.

Table 4 confirms that NSGA-II and MOPSO are better than random search based on the
three quality indicators IHV, IGD and IC on all six open source systems. The Wilcoxon rank
sum test showed that in 51 runs both NSGA-II and MOPSO results were significantly better
than random search. We conclude that there is empirical evidence that our multi-objective
formulation surpasses the performance of random search thus our formulation is adequate (this
answers RQ1).

4.7.2 Results for RQ2: Comparison with State of the Art Refactoring Approaches

In this section, we compare our NSGA-II adaptation to the current, state-of-the-art refactoring
approaches. To answer RQ2.1, we implemented a widely used multi-objective algorithm,
namely multi-objective particle swarm optimization (MOPSO) and we compared NSGA-II
and MOPSO using the same quality indicators used in RQ1. In addition, we used boxplots to
analyze the distribution of the results and discover the knee point (best trade-off between the
objectives). Furthermore, we compare our proposal with our previous formulation (Mkaouer
et al. 2014) based on two objectives using the FCS, SCS, ICS, CR, and ICT. To answer RQ2.2
we implemented a mono-objective Genetic Algorithm where one fitness function is defined as
an average of the three objectives (quality, severity and importance). The multi-objective
evaluation measures (IHV, IGD and IC) cannot be used in this comparison thus we considered
the five metrics FCS, SCS, ICS, CR, and ICT defined in Section 4.3. To answer RQ2.3 we
compared NSGA-II with two existing search-based refactoring approaches, Kessentini et al.
(Kessentini et al. 2011) and O’Keeffe et al. (O’Keeffe and Ó Cinnéide 2008), where uncer-
tainties are not taken into account. We considered the same metrics used to answer RQ2.2. To
answer RQ2.4, we compared our proposal to a popular design defects detection and correction
tool JDeodorant that does not use heuristic search techniques. We compared the results of this
tool with NSGA-II using FCS, SCS, ICS, CR, and ICT since only one refactoring solution can
be proposed and not a set of “non-dominated” solutions. To answer the above research
questions, we selected the solution from the set of non-dominated ones providing the
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maximum trade-off using the following strategy when comparing between the different
algorithms (expect the mono-objective algorithm where we select the solution with the highest
fitness function or the JDeodorant tool). In order to find the maximal trade-off solution of the
multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed
by Rachmawati and Srinivasan (Rachmawati and Srinivasan 2009) to evaluate the worthiness
of each non-dominated solution in terms of compromise between the objectives.

Results for RQ2.1: Comparison with Multi-Objective Approaches To answer the
second research question, RQ2.1, we compared NSGA-II to another widely used multi-
objective algorithm, MOPSO, using the same adapted fitness function. Table 4 shows the
overview of the results of the significance tests comparison between NSGA-II and MOPSO.
NSGA-II outperforms MOPSO in most of the cases: 20 out of 27 experiments (74 %).
MOPSO outperforms the NSGA-II approach only in GanttProject, which is the smallest open
source system considered in our experiments, having the lowest number of legal refactorings
available, so it appears that MOPSO’s search operators make a better task of working with a
smaller search space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4
out 6 experiments with one ‘no significant difference’ result. Regarding IHV, NSGA-II
outperformed MOPSO in 6 out of 9 experiments, where only two cases were not statistically
significant, namely GanttProject and Nutch. For IGD, the results were similar as for IC.

A more qualitative evaluation is presented in Fig. 3 illustrating the box plots obtained for
the multi-objective metrics on the different projects.

For almost all problems the distributions of the metrics values for NSGA-II have
smaller variability than for MOPSO. This fact confirms the effectiveness of NSGA-II
over MOPSO in finding a well-converged and well-diversified set of Pareto-optimal
refactoring solutions.

Next, we use all four metrics FCS, SCS, ICS and ICT to compare four robust refactoring
algorithms: our NSGA-II adaptation with the three objectives, MOPSO, our previous work
based on NSGA-II with two objectives.

The results from 51 runs are depicted in Table 5. For FCS, the number of fixed code smells
using NSGA-II is better than MOPSO in all systems except for GanttProject and also the FCS
score for NSGA-II is better than mono-EA in 100 % of cases. We have the same observation
for the SCS and ICS scores where NSGA-II outperforms MOPSO at least 88 % of cases. Even

Table 4 The significantly best algorithm among random search, NSGA-II and MOPSO (No sign. diff. means
that NSGA-II and MOPSO are significantly better than random, but not statistically different)

Project IC IHV IGD

Xerces-J NSGA-II NSGA-II NSGA-II

JFreeChart NSGA-II NSGA-II NSGA-II

GanttProject MOPSO No sign. diff. MOPSO

ApacheAnt NSGA-II NSGA-II NSGA-II

JHotDraw NSGA-II NSGA-II NSGA-II

Rhino No sign. diff. NSGA-II No sign. diff.

Log4J NSGA-II NSGA-II NSGA-II

Nutch No sign. diff. No sign. diff. NSGA-II

JDI-Ford NSGA-II NSGA-II NSGA-II
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for GanttProject, the number of fixed code smells using NSGA-II is very close to those fixed
by MOPSO. The execution time of NSGA-II is invariably lower than that of MOPSO with the
same number of iterations, however the execution time required by Mono-EA is lower
than both NSGA-II and MOPSO. The NSGA-II with the two objectives has a lower
execution time than our adaptation with three objectives which normal. The different
algorithms are using different change operators and number of objectives. In addition,
our robust algorithm is using a perturbation function which not used by the non-
robust algorithms. Thus it is normal that the execution time is different. However, it is
not a very important factor since refactoring recommendation is not a real-time
problem

In conclusion, we answer RQ2.2 by concluding that the results obtained in Table 5a
confirm that both multi-objective formulations are adequate and that NSGA-II outperforms
MOPSO in most of the cases.

Results for RQ2.2, RQ2.3 and RQ2.4: Comparison with Mono-Objective and non
Search-Based ApproachesWe first note that the mono-EA provides only one refactoring
solution, while NSGA-II and MOPSO generate a set of non-dominated solutions. In order
to make meaningful comparisons, we select the best solution for NSGA-II and MOPSO
using a knee point strategy as described previously. The knee point corresponds to the
solution with the maximal trade-off between quality and robustness, i.e., a small improve-
ment in either objective induces a large degradation in the other. Hence moving from the

Fig. 3 Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII and MOPSO
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knee point in either direction is usually not interesting for the developer. Thus, for NSGA-
II and MOPSO, we select the knee point from the Pareto approximation having the median
IHV value. We aim by this strategy to ensure fairness when making comparisons against
the mono-objective EA. For the latter, we use the best solution corresponding to the
median observation on 51 runs. We use the trade-off “worth” metric proposed by
Rachmawati et al. to find the knee point (Rachmawati and Srinivasan 2009). This metric
estimates the worthiness of each non-dominated refactoring solution in terms of trade-off
between quality and robustness. After that, the knee point corresponds to the solution
having the maximal trade-off “worthiness” value.

Table 5 also shows the results of comparing our robust approach based on NSGA-
II with two mono-objective refactoring approaches, a mono-objective genetic algo-
rithm (Mono-EA) that has a single fitness function aggregating the two objectives,
and a practical refactoring technique where developers used a refactoring plug-in in
Eclipse to suggest solutions to fix code smells. It is apparent from Table 5 that our
NSGA-II adaptation outperforms mono-objective approaches in terms of smell-fixing
ability (FCS) all the cases. In addition, our NSGA-II adaptation outperforms all the
mono-objective and manual approaches in 100 % of experiments in terms of the two
robustness metrics, SCS and ICS. This is can be explained by the fact that NSGA-II
aims to find a compromise between the three objectives however the remaining
approaches did not consider robustness but only quality. Thus, NSGA-II sacrifices a
small amount of quality in order to improve importance and severity. Furthermore, the
number of code smells fixed by NSGA-II is very close to the number fixed by the
mono-objective and manual approaches, so the sacrifice in solution quality is quite
small. When comparing NSGA-II with the remaining approaches we considered the
best solution selected from the Pareto-optimal front using the knee point-based
strategy described above. Another interesting observation is that our refactoring
solutions prioritized fixing code fragments containing severe code smells and also
located in important classes. In fact, as described in Table 5 our approach fixed more
important and severe code smells than all other existing approaches based on the SCS
and ICS metrics. It is also well-known that a mono-objective algorithm requires lower
execution time for convergence since only one objective is handled.

To answer RQ2.3 and RQ2.4, the results of Table 5b support the claim that our NSGA-II
formulation provides a good trade-off between importance, severity and quality, and outperforms on
average the state of the art of refactoring approaches, both search-based and manual, with a low
robustness cost.

4.7.3 Results for RQ3: Manual Evaluation of the Results by Developers

To answer the last question RQ3 a manual evaluation were performed by subjects to estimate
the correctness of the suggested refactoring. Figure 4 depicts the different Pareto surface
obtained on the JDI-Ford system using NSGA-II to optimize the three objectives of quality,
severity and importance. Due to space limitations, we show only this example of the Pareto-
optimal front approximation. Similar fronts were obtained on the remaining systems. The 3-D
projection of the Pareto front helps developers to select the best trade-off solution between the
three objectives based on their own preferences. Based on the plot of Fig. 4, the developer
could degrade quality in favor of importance and severity while controlling visually the
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robustness cost, which corresponds to the ratio of the quality loss to the achieved importance
and severity gain. In this way, the preferred robust refactoring solution can be realized.

One striking feature is that starting from the highest quality solution the trade-off between
the three objectives is in favor of quality, meaning that the quality degrades slowly with a fast
increase in importance and severity up to the knee point, marked in each figure. Thereafter,
there is a sharp drop in quality with only a small increase in importance. It is very interesting to
note that this property of the Pareto-optimal front is apparent in all the problems considered in
this study. Without any robustness consideration in the search process, one would obtain the
highest quality solution all the time (which is not robust at all), but Fig. 4 shows how a better
robust solution (importance and severity) can be obtained by sacrificing just a little in quality.
Figure 4 shows the impact of different levels of perturbation on the Pareto-optimal front.
However, it is difficult to generalize the observation that “the sacrifice in solution quality is
quite small”. The programmers may select the solution based on their preferences and the
current context. In case that the programmers do not have enough time to fix all or most of the
defects, they may select the refactoring solution fixing the most severe ones or those located in
important classes. In other situations where there is enough time before the next release and
several programmers are available, a solution that minimizes the sacrifice in quality is more
adequate. The slight sacrifice on quality was only observed on few systems, thus it is hard to
generalize the results.

Our approach takes as input as the maximum level of perturbation applied in the smell
severity and class importance at each iteration during the optimization process. A high level of
perturbation generates more robust refactoring solutions than those generated with lower
variations, but the solution quality in this case will be higher. As described by Fig. 4, the
developer can choose the level of perturbation based on his/her preferences to prioritize quality
or robustness. Although the Pareto-optimal front changes depending on the perturbation
level, there still exists a knee point, which makes the decision making by a developer
easier in such problems.

Fig. 4 3-D projection of the Pareto-Front solutions on the JDI-Ford system
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Figure 5 describes the manual qualitative evaluation of some suggested refactoring solu-
tions. It is clear that results are almost similar between our proposal and existing approach in
terms of the semantic coherence of suggested refactorings. We consider that a semantic
precision more than 70 % acceptable since most of the solutions should be executed manually
by developers and our tool is a recommendation system. Thus, developers can evaluate if it is
interesting or not to apply some refactorings based on their preferences and the semantic
coherence.

To answer RQ3 more adequately, we considered two real-world scenarios to justify the
importance of taking into consideration robustness when suggestion refactoring solutions. In
the first scenario, we modified the degree of severity of the four types of code smells over time
and we evaluated the impact of this variation on the robustness of our refactoring solution in
terms of smell severity (SCS). This scenario is motivated by the fact that there is no general
consensus about the severity score of detected code smells thus software engineers can have
divergent opinions about the severity of detected code smells. Figure 6 shows that our NSGA-
II approach generates robust refactoring solutions on the Ant Apache system in comparison to
existing state of the art refactoring approaches. In fact, the more the variation in severity
increases over time the more the refactoring solutions provided by existing approaches become
non-robust. Thus, our multi-objective approach enables the most severe code smells to be
corrected even with slight modifications in the severity scores. The second scenario involved
applying randomly a set of commits, collected from the history of changes of the open source
systems (Ouni et al. 2012), and evaluating the impact of these changes on the robustness of
suggested refactoring proposed by our NSGA-II algorithm and non-robust approaches. As
depicted in Fig. 7, the application of new commits modifies the importance of classes in the
system containing code smells and the refactoring solutions proposed by mono-objective and
manual approaches become ineffective. However, in all the scenarios it is clear that our
refactoring solutions are still robust and fixing code smells in most of important classes in
the system even with high number of new commits (more than 40 commits). We also
compared the results achieved by the different techniques for different values of severity and
class importance using the Wilcoxon test. The obtained results are statistically analyzed by
using the Wilcoxon rank sum test with a 95 % confidence level (α=5 %). We also compared

Fig. 5 The median correctness values (CR) of the recommended refactorings based on 51 runs. The obtained
results are statistically analyzed by using the Wilcoxon rank sum test with a 95 % confidence level (α = 5 %)
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the refactoring solution at the knee-point (robust) for ApacheAnt with the best refactoring
solution that maximizes only the quality (non-robust) to understand why the former solution is
robust in both scenarios. We found that the knee-point solution rectified some code-smells that
were not very risky and not located in important classes but these code-smells become more
important after new commits. Thus, we can conclude that the simulation of changes in both
importance and severity helps our NSGA-II to predict some future changes and adapt the best
solutions according to that. Hence we conclude that RQ3 is affirmed and that the robust multi-
objective approach has value for software engineers in a real-world setting.

Fig. 6 The impact of code smells severity variations on the robustness of refactoring solutions for ApacheAnt.
The obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95 % confidence level
(α = 5 %)

Fig. 7 The impact of class importance variation on the robustness of refactoring solutions for Apache Ant. The
obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95 % confidence level
(α = 5 %)
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4.8 Threats to Validity

There are four types of threat that can affect the validity of our experiments. We consider each
of these in the following paragraphs.

Conclusion validity is concerned with the statistical relationship between the treat-
ment and the outcome. We used the Wilcoxon rank sum test with a 95 % confidence
level to test if significant differences existed between the measurements for different
treatments. This test makes no assumption that the data is normally distributed and is
suitable for ordinal data, so we can be confident that the statistical relationships we
observed are significant.

Internal validity is concerned with the causal relationship between the treatment and the
outcome. When we observe an increase in robustness, was it caused by our multi-objective
refactoring approach, or could it have occurred for another reason? We dealt with internal
threats to validity by performing 51 independent simulation runs for each problem instance.
This makes it highly unlikely that the observed increased in robustness was caused by anything
other than the applied multi-objective refactoring approach. Another threat is related to the fact
that the original developers of the open source systems were not asked to evaluate the
suggested refactorings. In addition, we should perform further experiments as part of our
future work to compare recommended refactorings with expected ones (suggested by the
original developers).

Construct validity is concerned with the relationship between theory and what is observed.
Most of what we measure in our experiments are standard metrics such as IHV, ICT etc. that
are widely accepted as good proxies for quality. The notion of class importance we use in this
paper is new and so constitutes a possible threat to construct validity. However, the formula we
use for class importance is a routine size measure so, while many other definitions are possible,
we consider the risk small that another formulation would yield very different results. We also
assume that code smell severity is assigned on a per-type basis, so e.g., all blobs have the same
severity. In reality, a developer would probably want to assign different blob instances different
severities. While this is a weakness in our model, we do not anticipate that very different
results would be obtained using per-instance model.

External validity refers to the generalizability of our findings. In this study, we performed
our experiments on six different widely used open-source systems belonging to different
domains and with different sizes, as described in Table 4 and just one industrial project.
However, we cannot assert that our results can be generalized to industrial Java applications,
other programming languages, and to other practitioners. Future replications of this study are
necessary to confirm our findings.

5 Conclusion and Future Work

In this paper, we have introduced a novel formulation of the refactoring problem that takes into
account the uncertainties related to code smell correction in the dynamic environment of
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software development where code smell severity and class importance cannot be regarded as
fixed. Code smell severity will vary from developer to developer and the importance of the
class that contains the smell will vary as the code base itself evolves. We have reported the
results of an empirical study of our robust technique compared to different existing ap-
proaches, and the results obtained have provided evidence to support the claim that our
proposal enables the generation of robust refactoring solutions without a high loss of quality
based on a benchmark of six large open source systems.

Our consideration of robustness as a separate objective has revealed an interesting feature of
the refactoring problem in general. In our experiments, the trade-off between quality and
robustness resulted in a knee solution in every case. From the highest quality solution to the
knee point, the trade-off is in favor of quality, while after the knee point quality degrades more
quickly than robustness. Based on this observation, we can recommend the knee solution to
the software engineer as the most likely quality-robustness trade-off solution to consider.

Future work involves extending our approach to handle additional code smell types in order
to test further the general applicability of our methodology. In this paper, we focused on the use
of a structural metric to estimate class importance, but this can be extended to consider also the
pattern of repository submits to achieve another perspective on class importance. In a similar
vein, our notion of smell severity assumes each smell type has a certain severity, but a more
realistic model is to allow each individual smell instance to be assigned its own severity. If
further experiments confirm our observation that the knee point is indeed a trademark of the
quality-robustness trade-off frontier for all software refactoring problems, then it would be
interesting to apply straightway a knee-finding algorithm (Deb and Gupta 2011) to the bi-
objective problem and determine if it yields any computational benefit. In an interactive
software refactoring tool, the potential speed-up might be critical to success. Overall the use
of robustness as a helper objective in the software refactoring task opens up a new direction of
research and application with the possibility of finding new and interesting insights about the
quality and severity trade-off in the refactoring problem.
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