
High Dimensional Search-based Software Engineering:

Finding Tradeoffs Among 15 Objectives for Automating
Software Refactoring Using NSGA-III

ABSTRACT
There is a growing need for scalable search-based software
engineering approaches that address software engineering problems
where a large number of objectives are to be optimized. Software
refactoring is one of these problems where a refactoring sequence is
sought that optimizes several software metrics. Most of the existing
refactoring work uses a large set of quality metrics to evaluate the
software design after applying refactoring operations, but current
search-based software engineering approaches are limited to using a
maximum of five metrics. We propose for the first time a scalable
search-based software engineering approach based on a newly
proposed evolutionary optimization method NSGA-III where there
are 15 different objectives to be optimized. In our approach,
automated refactoring solutions are evaluated using a set of 15
distinct quality metrics. We evaluated this approach on seven large
open source systems and found that, on average, more than 92% of
code smells were corrected. Statistical analysis of our experiments
over 31 runs shows that NSGA-III performed significantly better than
two other many-objective techniques (IBEA and MOEA/D), a multi-
objective algorithm (NSGA-II) and two mono-objective approaches,
hence demonstrating that our NSGA-III approach represents the new
state of the art in fully-automated refactoring.

Categories and Subject Descriptors
D.2 [Software Engineering].

General Terms
Algorithms, Reliability.

Keywords
Search-based software engineering, software quality, code smells,

many-objective optimization.

1. INTRODUCTION
Search-based software engineering (SBSE) studies the application of
meta-heuristic optimization techniques to software engineering

problems [1]. Once a software engineering task is framed as a search

problem, by defining it in terms of solution representation, objective

function, and solution change operators, there are a multitude of
search algorithms that can be applied to solve that problem. Search-
based techniques are widely applied to solve software engineering
problems such as in testing, modularization, refactoring, planning,

etc. [15][13].

Based on a recent SBSE survey [15], the majority of existing work

treats software engineering (SE) problems from a single-objective
point of view, where the main goal is to maximize or minimize one
objective, e.g., correctness, quality, etc. However, most SE problems
are naturally complex in which many conflicting objectives need to
be optimized such as model transformation, design quality
improvement, test suite generation etc. The number of objectives to
consider for most of software engineering problems is, in general,
high (more than three objectives); such problems are termed many-
objective. We claim that the reason that software engineering
problems have not been formulated as many-objective problems is
because of the challenges in constructing a many-objective solution.
In this context, the use of traditional multi-objective techniques, e.g.,

NSGA-II [8], widely used in SBSE, is clearly not sufficient.

There is a growing need for scalable search-based software
engineering approaches that address software engineering problems
where a large number of objectives are to be optimized. Improving
the scalability of SBSE approaches will increase their applicability in
industry and real-world settings. Recent work in optimization has
proposed several solution approaches to tackle many-objective

optimization problems [17][30] using e.g., objective reduction, new

preference ordering relations, decomposition, etc. However, these

techniques have not yet been widely explored in SBSE [6]. To the

best of our knowledge and based on recent SBSE surveys [15], only

one work exists proposed by Abdel Salam et al. [26] that uses a

many-objective approach, IBEA (Indicator-Based Evolutionary

Algorithm) [31], to address the problem of software product line

creation. However, the number of considered objectives is limited to
5.
Software refactoring is one of those software engineering problems
where there are several objectives to be satisfied. Refactoring
improves the design of a system by changing its internal structure

without altering its external behavior [12], and is widely used to fix

code smells. Code smells are known to have a negative impact on

quality attributes such as flexibility or maintainability [4][29].

Software engineers often introduce code smells unintentionally
during the initial design or during software development due to bad
design decisions, ignorance or time pressure. Most of the existing
refactoring work uses a set of more than five quality metrics to
evaluate the quality of software design after applying refactoring
operations. In this paper, we propose for the first time a scalable

search-based software engineering approach based on NSGA-III [7]

where there are 15 different objectives to optimize. Thus, in our
approach, automated refactoring solutions will be evaluated using a
set of 15 software quality metrics. NSGA-III is a very recent many-

Wiem Mkaouer, Marouane Kessentini,
Slim Bechikh

University of Michigan, Dearborn, MI, USA

firstname@umich.edu

Kalyanmoy Deb
Michigan State University, USA

kdeb@egr.msu.edu

Mel Ó Cinnéide
University College Dublin, Ireland

mel.ocinneide@ucd.ie

1263

Author Preprint

objective algorithm proposed by Deb et al. [7]. The basic framework

remains similar to the original NSGA-II algorithm [8], with

significant changes in its selection mechanism. This paper represents
the first real-world application of NSGA-III and the first scalable
work that supports the use of 15 objectives to address a software
engineering problem.
We implemented our approach and evaluated it on seven large open
source systems and found that, on average, more than 92% of code
smells were corrected. The statistical analysis of our experiments over
31 runs shows that NSGA-III performed significantly better than two
other many-objective techniques (IBEA and MOEA/D), a multi-
objective algorithm (NSGA-II) and two mono-objective approaches

[19][23].

2. MANY-OBJECTIVE SEARCH-BASED

SOFTWARE ENGINEERING
By definition, a many-objective problem is a multi-objective one but

with a high number of objectives M, i.e., M > 3. Analytically, it could

be stated as follows [5]:





















.1

1 0)(

1 0)(

3 ,)](),...,(),([)(21

,...,nixxx

,...,Q;kxh

,...,P;jxg

MxfxfxfxfMin

U
ii

L
i

k

j

T
M

where M is the number of objective functions and is strictly greater

than 3, P is the number of inequality constraints, Q is the number of

equality constraints, L
ix and U

ix correspond to the lower and upper

bounds of the decision variable ix (i.e., ith component of x). A

solution x satisfying the (P+Q) constraints is said to be feasible and

the set of all feasible solutions defines the feasible search space

denoted by Ω.

In this formulation, we consider a minimization multi-objective

problem (MOP) since maximization can be easily turned to

minimization based on the duality principle. Over the two past

decades, several Multi-Objective Evolutionary Algorithms (MOEAs)

have been proposed with the hope to work with any number of

objectives M. Unfortunately, It has been demonstrated that most

MOEAs are ineffective in handling such type of problems. For

example, NSGA-II [8], which is one of the most used MOEAs,

compares solutions based on their non-domination ranks. Solutions

with best ranks are emphasized in order to converge to the Pareto

front. When M > 3, only the first rank may be assigned to every

solution as almost all population individuals become non-dominated

with each other. Without a variety of ranks, NSGA-II cannot keep the

search pressure anymore in high dimensional objective spaces.

The difficulty faced when solving many-objective problems could be

summarized as follows. Firstly, most solutions become equivalent

between each other according to the Pareto dominance relation which

deteriorates dramatically the search process ability to converge

towards the Pareto front and the MOEA behaviour becomes very

similar to the random search one. Secondly, a search method requires

a very high number of solutions (some thousands and even more) to

cover the Pareto front when the number of objectives increases. For

instance, it has been shown that in order to find a good

approximation of the Pareto front for problems involving 4, 5 and 7

objective functions, the number of required non-dominated solutions

is about 62 500, 1 953 125 and 1 708 984 375 respectively [17];

which makes the decision making task very difficult. Thirdly, the

objective space dimensionality increases significantly, which makes

promising search directions very hard to find. Fourthly, the diversity

measure estimation becomes very computationally costly since

finding the neighbors of a particular solution in high dimensional

spaces is very expensive. Fifthly, recombination operators become

inefficient since population members are likely to be widely distant

from each other which yields to children that are not similar to their

parents; thereby making the recombination operation inefficient in

producing promising offspring individuals. Finally, although it is not

a matter that is directly related to optimization, the Pareto front

visualization becomes more complicated, therefore making the

interpretation of the MOEA’s results more difficult for the user.

According to a recent survey by Harman et al. [13], most software

engineering problems are multi-objective by nature. However, most

of existing approaches to address software engineering problems such

as model transformation, design quality improvement, test suite

generation, etc. are based on a mono-objective view. Multi-objective

optimization techniques have been proposed in a few works [26][24]

for such problems and they satisfy up to 5 objectives. However, as

with any other practical domain, most software engineering problems

involve optimizing more than this number of objectives. Thus, more

scalable search-based software engineering approaches will be

beneficial to handle rich objective spaces. We investigate, in this

paper, the applicability of many-objective techniques for the software

refactoring problem where up to 15 objectives are considered to

evaluate refactoring suggestions.

3. MANY-OBJECTIVE SOFTWARE

REFACTORING USING NSGA-III

3.1 NSGA-III
NSGA-III is a very recent many-objective algorithm proposed by Deb

et al. [7]. The basic framework remains similar to the original NSGA-

II algorithm [8] with significant changes in its selection mechanism.

Figure 2 gives the pseudo-code of the NSGA-III procedure for a

particular generation t. First, the parent population Pt (of size N) is

randomly initialized in the specified domain, and then the binary

tournament selection, crossover and mutation operators are applied to

create an offspring population Qt. Thereafter, both populations are

combined and sorted according to their domination level and the best

N members are selected from the combined population to form the

parent population for the next generation. The fundamental difference

between NSGA-II and NSGA-III lies in the way the niche

preservation operation is performed. Unlike NSGA-II, NSGA-III

starts with a set of reference points Zr. After non-dominated sorting,

all acceptable front members and the last front Fl that could not be

completely accepted are saved in a set St. Members in St/Fl are

selected right away for the next generation. However, the remaining

members are selected from Fl such that a desired diversity is

maintained in the population. Original NSGA-II uses the crowding

distance measure for selecting well-distributed set of points, however,

in NSGA-III the supplied reference points (Zr) are used to select these

remaining members (cf. Figure 1). To accomplish this, objective

values and reference points are first normalized so that they have an

identical range. Thereafter, orthogonal distance between a member in

St and each of the reference lines (joining the ideal point and a

reference point) is computed. The member is then associated with the

reference point having the smallest orthogonal distance. Next, the

niche count ρ for each reference point, defined as the number of

members in St/Fl that are associated with the reference point, is

computed for further processing. The reference point having the

minimum niche count is identified and the member from the last front

1264

Author Preprint

Fl that is associated with it is included in the final population. The

niche count of the identified reference point is increased by one and

the procedure is repeated to fill up population Pt+1.

It is worth noting that a reference point may have one or more

population members associated with it or need not have any

population member associated with it. Let us denote this niche count

as ρj for the j-th reference point. We now devise a new niche-

preserving operation as follows. First, we identify the reference point

set Jmin = {j: argminj (ρj)} having minimum ρj. In case of multiple

such reference points, one (j*Jmin) is chosen at random. If ρj* = 0

(meaning that there is no associated Pt+1 member to the reference

point j*), two scenarios can occur. First, there exists one or more

members in front Fl that are already associated with the reference

point j*. In this case, the one having the shortest perpendicular

distance from the reference line is added to Pt+1. The count ρj* is then

incremented by one. Second, the front Fl does not have any member

associated with the reference point j*. In this case, the reference point

is excluded from further consideration for the current generation. In

the event of ρj* ≥ 1 (meaning that already one member associated

with the reference point exists), a randomly chosen member, if exists,

from front Fl that is associated with the reference point Fl is added to

Pt+1. If such a member exists, the count ρj* is incremented by one.

After ρj counts are updated, the procedure is repeated for a total of K

times to increase the population size of Pt+1 to N.

3.2 Adapting NSGA-III for the Software

Refactoring Problem

3.2.1 Problem formulation

The refactoring problem involves searching for the best refactoring

solution among the set of candidate ones, which constitutes a huge

search space. A refactoring solution is a sequence of refactoring

operations where the goal of applying the sequence to a software

system S is typically to minimize the number of code smells in S.

Usually in SBSE approaches, we use two or three metrics as

objective functions for a particular multi-objective heuristic

algorithm to find smells and correct them. However, in reality, there

are many types of code smell and detecting the symptoms of each

smell requires a particular set of metrics. Motivated by this

observation, we propose in this research work to use a high number

of metrics (15 metrics) where each represents a separate objective

function. In this way, we obtain a many-objective (15-objective)

formulation of the refactoring problem that could not be solved using

standard multi-objective approaches. This formulation is given as

follows:

),...,(

)],(),...,,(),,([),(

1

1521

Xxxxtosubject

SxfSxfSxfSxFMaximize

n 



where X is the set of all legal refactoring sequences starting from S, xi

is the i-th refactoring operation, and fk(x,S) is the k-th metric. The 15

metrics under consideration will be detailed in the experimental study

since our formulation is generic and applies to any software metrics.

3.2.2 Solution approach
Solution representation. As defined in the previous section, a
solution consists of a sequence of n refactoring operations applied to
different code elements in the source code to fix. In order to represent
a candidate solution (individual/chromosome), we use a vector-based
representation. Each vector’s dimension represents a refactoring
operation where the order of applying these refactoring operations
corresponds to their positions in the vector. For each of these
refactoring operations, we specify pre- and post-conditions in the
style of Opdyke [12] to ensure the feasibility of their application. The
initial population is generated by assigning randomly a sequence of
refactorings to some code fragments. To apply a refactoring operation
we need to specify which actors, i.e., code fragments, are
involved/impacted by this refactoring and which roles they play in
performing the refactoring operation. An actor can be a package,
class, field, method, parameter, statement, or variable.

Solution variation. In each search algorithm, the variation operators
play the key role of moving within the search space with the aim of
driving the search towards optimal solutions. For crossover, we use
the one-point crossover operator. It starts by selecting and splitting at
random two parent solutions. Then, this operator creates two child
solutions by putting, for the first child, the first part of the first parent
with the second part of the second parent, and vice versa for the
second child. This operator must ensure the respect of the length

Figure 1. Normalized reference plane for a three-objective case

[19].

NSGA-III procedure at generation t

Input: H structured reference points Zs, parent population Pt

Output: Pt+1

00:

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

 Begin

 St ← Ø, i ← 1;

 Qt ← Variation (Pt);

 Rt ← Pt  Qt;

 (F1, F2, ...) ← Non-dominationed_Sort (Rt);

 Repeat

 St ← St  Fi; i ← i+1;

 Until | St | ≥ N;

 Fl ← Fi; /*Last front to be included*/

 If | St | = N then

 Pt+1 ← St;

 Else

 Pt+1 ← 1
1




l
j Fj;

 /*Number of points to be chosen from Fl*/

 K ← N – |Pt+1|;

 /*Normalize objectives and create reference set Zr*/

 Normalize (FM; St; Zr; Zs);

 /*Associate each member s of St with a reference point*/

 /*π(s): closest reference point*/

 /*d(s): distance between s and π(s)*/

 [π(s), d(s)] ← Associate (St, Zr);

 /*Compute niche count of reference point rZj */

ρj ←  lFtSs /
((π(s) = j) ? 1 : 0);

 /*Choose K members one at a time from Fl to construct Pt+1*/

 Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1);

 End If

 End

Figure 2. Pseudocode of NSGA-III main procedure.

1265

Author Preprint

limits by eliminating randomly some refactoring operations. It is
important to note that in many-objective optimization, it is better to
create children that are close to their parents in order have a more
efficient search process [7]. For this reason, we control the cutting
point of the one-point crossover operator by restricting its position to
be either belonging to the first tier of the refactoring sequence or
belonging to the last tier. For mutation, we use the bit-string mutation
operator that picks probabilistically one or more refactoring
operations from its or their associated sequence and replaces them by
other ones from the initial list of possible refactorings.

Solution evaluation. Each generated refactoring solution is executed
on the system S. Once all required data is computed, the solution is
evaluated based on the 15 metrics used as objective functions. Based
on these values, the refactoring solution is assigned a non-domination
rank (as in NSGA-II) and a position in the objective space allowing it
to be assigned to a particular reference point based on distance
calculation as previously described.

Normalization of population members. Usually objective functions

(metrics) are incommensurable (i.e., they have different scales). For

this reason, we used the normalization procedure proposed by Deb et

al. [7] to circumvent this problem. At each generation, the minimal

and maximal values for each metric are recorded and then used by the

normalization procedure. Normalization allows the population

members and with the reference points to have the same range, which

is a pre-requisite for diversity preservation.

4. DESIGN OF THE EMPIRICAL STUDY

4.1 Research Questions

RQ1: How does NSGA-III perform compared to other many-

objective (MOAE/D [30], IBEA [31]) and multi-objective (NSGA-II

[8]) techniques? It is important to evaluate the performance of

NSGA-III in terms of scalability when the number of considered

objectives increases. In addition, it is interesting to determine if

considering more metrics (objectives) improves the quality of the

suggested refactoring solutions (the number of fixed code smells).

RQ2: How does NSGA-III perform compared to mono-objective

refactoring approaches [19][23]? It is important to determine if

considering each conflicting metric as a separate objective to

optimize performs better than a mono-objective approach that

aggregates all metrics in one objective. The comparison between a

many-objective EA with a mono-objective one is not straightforward.

The first one returns a set of non-dominated solutions while the

second one returns a single optimal solution. In order to resolve this

problem, for each many-objective algorithm we choose the nearest

solution to the ideal point [3] (i.e., the vector composed of the best

objective values among the population members) as a candidate

solution to be compared with the single solution returned by the

mono-objective algorithm. For both RQ1 and RQ2, we performed a

qualitative evaluation where 8 PhD students in Software Engineering,

with at least 2 years programming experience in Java and familiar

with the evaluated open source systems, evaluated 10 operations from

the best suggested refactoring solutions for each system. The

operations were classified as useful (make sense semantically) or not.

RQ3: How does our many-objective formulation scale? There is a

cost in allowing the developer to specify a large number of

objectives. Can it be demonstrated that as the number of objectives

increases, we can achieve a commensurate increase in the quality of

the solutions generated? If not, then our approach is not justified.

4.2 Experimental Setup

4.2.1 Systems Studied
Our study considers the extensive evolution of different open source

Java systems analyzed in the literature [19][24][21][25]. The corpus

used includes releases of Apache Ant, ArgoUML, Gantt, Azureus and

Xerces-J. Table 1 reports the size in terms of classes of the analyzed

systems. The table also reports the number of code smells identified

manually in the different systems -- more than 700 in total. Indeed, in

several works [19][24][21][25], the authors asked different groups of

developers to analyze the libraries to tag instances of specific code

smells to validate their detection techniques. For replication

purposes, they provided a corpus describing instances of different

code smells including blob, spaghetti code, and functional

decomposition [12]. In our study, we verified the capacity of our

approach to fix classes that correspond to instances of these code

smells. We used the detection rules of code smells proposed in

Kessentini et al. [19] to identify the number of fixed code smells after

applying the best refactoring solutions.

Table 1. Features of software systems analyzed.

Systems Number of classes Number of code smells

ArgoUML v0.26 1358 138

ArgoUML v0.3 1409 129

Xerces v2.7 991 82

Ant-Apache v1.5 1024 103

Ant-Apache v1.7.0 1839 124

Gantt v1.10.2 245 41

Azureus v2.3.0.6 1449 108

4.2.2 Performance Indicators
We used mainly three performance indicators to compare the

different algorithms used in our experiments. These indicators are

defined as follows:

- Inverted Generational Distance (IGD): is used as the performance

metric since it has been shown to reflect both the diversity and

convergence of the obtained non-dominated solutions [7]. The IGD

corresponds to the average Euclidean distance separating each

reference solution from its closest non-dominated one. Note that for

each system we use the set of Pareto optimal solutions generated by

all algorithms over all runs as reference solutions.

- Percentage of fixed code smells (NF) is the percentage of code

smells fixed by the application of the best refactoring solution (i.e.,

number of fixed smells divided by the total number of code smells).

The detection of code smells after applying a refactoring solution is

performed using the detection rules of Kessentini et al. [19].

- Usefulness of suggested refactorings (UC) is the number of

refactoring operations that make sense and useful divided by the total

number of manually evaluated operations.

- Computational time (CT) is used mainly to compare the efficiency

of NSGA-III with other algorithms using the same number of

objectives.

4.2.3 Statistical Tests
Our experimental study is performed based on 31 independent
simulation runs for each problem instance and the obtained results
are statistically analyzed by using the Wilcoxon rank sum test with a
95% confidence level (α = 5%). The latter verifies the null hypothesis
H0 that the obtained results of two algorithms are samples from
continuous distributions with equal medians, against the alternative
that they are not H1. The p-value of the Wilcoxon test corresponds to
the probability of rejecting the null hypothesis H0 while it is true

1266

Author Preprint

(type I error). A p-value that is less than or equal to α (≤ 0.05) means
that we accept H1 and we reject H0. However, a p-value that is strictly
greater than α (> 0.05) means the opposite. In fact, for each problem
instance, we compute the p-value obtained by comparing NSGA-II,
IBEA, MOEA/D and mono-objective search results with NSGA-III
ones.

4.2.4 Parameter Settings
Parameter setting influences significantly the performance of a search

algorithm on a particular problem [1]. For this reason, for each many-

objective algorithm and for each system (cf. Table 1), we perform a

set of experiments using several population sizes: 91, 210, 156, 275

and 135 for respectively 3, 5, 8, 10 and 15 objectives. The maximum

number of generations used is 400, 600, 750, 1000 and 1500

respectively for 3, 5, 8, 10 and 15 objectives. Each algorithm is

executed 31 times with each configuration and then comparison

between the configurations is done based on IGD using the Wilcoxon

test. In order to have significant results, for each couple (algorithm,

system), we use the trial and error method [1] in order to obtain a

good parameter configuration. Since we are comparing different

search algorithms, we classify parameters into common parameters

and specific parameters. Table 2 depicts the important common

parameters. We used a set of 15 quality metrics, namely Weighted

Methods per Class (WMC), Response for a Class (RFC), Lack of

Cohesion of Methods (LCOM), Cyclomatic Complexity (CC),

Number of Attributes (NA), Attribute Hiding Factor (AH), Method

Hiding Factor (MH), Number of Lines of Code (NLC), Coupling

Between Object Classes (CBO), Number of Association (NAS),

Number of Classes (NC), Depth of Inheritance Tree (DIT),

Polymorphism Factor (PF), Attribute Inheritance Factor (AIF) and

Number of Children (NOC) [10]. We selected randomly at each run

some metrics from this list when the number of objectives is lower

than 15. We used 23 refactoring types in our experiments, namely

Add Parameter, Rename Method Encapsulate Collection/ Downcast/

Field, Collapse Hierarchy, Hide Method, Extract Class /Interface/

Method/ Subclass/ Superclass, Inline Class/ Method, Move Field/

Method, Pull Up Field/ Method, Push Down Field/ Method and

Remove Parameter/ Setting Method [31].

 Table 2. The setting of common parameters.

Number of

objectives

Number of reference points

(for NSGA-III and MOEA/D)

Population

size

3 91 120

5 210 230

8 156 190

10 275 280

15 135 290

4.3 Results

Table 3 shows the median IGD and NF values of over 31 independent

runs for all algorithms under comparison. All the results were

statistically significant in the 31 independent simulations using the

Wilcoxon rank sum test [1] with a 99% confidence level (α < 1%).

For the 3-objective case, we see that NSGA-III and NSGA-II present

similar results, and that NSGA-III provides slightly better results than

IBEA and MOEA/D. For the 5-objective case, NSGA-III strictly

outperforms NSGA-II and gives similar results to those of the two

other multi-objective algorithms. For the 8-objective case, NSGA-III

is strictly better than NSGA-II and significantly better than IBEA and

MOEA/D. Additionally, IBEA seems to be slightly better than

MOEA/D. It is worth noting that for problems’ instances with 8

objectives or more, NSGA-II performance is dramatically degraded,

which is simply denoted by the ~ symbol. For the 10- and 15-

objective cases, NSGA-III is strictly better than all other algorithms.

Moreover, MOEA/D seems to significantly outperform IBEA. The

performance of NSGA-III could be explained by the interaction

between: (1) Pareto dominance-based selection and (2) reference

point-based selection, which is the distinguishing feature of NSGA-

III compared to other existing many-objective algorithms. The

percentage of fixed code smells using NSGA-III is better than all

other algorithms in all systems in 100% of cases when more than 8

objectives are considered. It is clear from Table 3 that the percentage

of fixed code smells increases as we use more quality metrics to

evaluate refactoring solutions. On average, all the four algorithms

NSGA-III, IBEA, MOEA/D and NSGA-II perform similarly with 3

objectives, however the percentage of fixed code smells is low in all

systems. This is due to the fact that the use of only three quality

metrics is not enough to evaluate the quality of the design after

applying the best refactoring solution. The average percentage of

fixed code smells in all systems using NSGA-III with 15 objectives

on all systems is higher than 92%, which outperforms all the

remaining algorithms. Thus, we can conclude that NSGA-III

represents a scalable solution to find trade-offs between 15 objectives

and that the use of additional objectives (metrics) improves the

quality of refactoring solutions.

Figure 3 illustrates the value path plots of all algorithms regarding the

15-objective refactoring problem on ArgoUMLv0.26, the largest

system used in our experiments. Similar observations were made in

the remaining systems but are omitted due to space considerations.

All quality metrics were normalized between 0 and 1 and all are to be

minimized. We observe that NSGA-III presents the best convergence

since its non-dominated solutions are the closest to the ideal point,

Figure 3. Value path plots of non-dominated solutions obtained by NSGA-III, MOEA/D, IBEA and NSGA-II during the median run of

the 15-objective refactoring problem on ArgoUML v0.26.

1267

Author Preprint

i.e., the vector composed of 15 zeros. Also, MOEA/D seems to have

better convergence than IBEA. However, NSGA-II is unable to

progress in terms of convergence as its non-dominated solutions are

situated far from the ideal vector. We conclude that although NSGA-

II is the most famous multi-objective algorithm in SBSE, it is not

adequate for problems involving more than 3 objectives. Based on

the results we obtained for the refactoring problem, it appears that

NSGA-III is a very good candidate solution for tackling many-

objective SBSE problems.

We also compared the results of NSGA-III using 15 objectives and

two mono-objective refactoring approaches on all seven open source

systems as described in Figure 4. From the set of non-dominated

solutions generated by NSGA-III, we selected the solution closest to

the ideal point. NSGA-III performed better than both mono-objective

algorithms in 100% of cases. In fact, since mono-objective algorithms

aggregate all metrics in one objective there is a loss of information

due to the conflicting nature of the used quality metrics. It is clear

that mono-objective algorithms did not perform well in terms of

fixing code smells whereas NSGA-III fixed on average more than

92% of them, especially in the case of large systems such as Ant

Apache and Argo UML. In general, large systems contain many

different types of code smells and so a large number of metrics is

required to evaluate the quality of a system after applying a

refactoring solution. We asked 8 PhD students in Software

Engineering to manually evaluate some suggested refactorings if they

are useful and semantically make sense or not. As described in Figure

5, the use of high number of metrics such as coupling and cohesion

not only improve the structure by fixing code-smells but also helped

our NSGA-III based algorithm to generate refactoring solutions that

semantically make sense and. In all the considered systems, NSGA-

III outperforms existing work in terms of semantics preservation with

at least 73% of precision on every system.

4.1 Discussion

Computational time (CT):

When using optimization techniques, the most time consuming

operation is the evaluation step. Thus, we studied the execution time

of all many/multi-objective algorithms used in our experiments.

Figure 5 shows the evolution of the running times of the different

algorithms on the ArgoUMLv0.26 system, the largest system in our

experiments. It is clear from this figure, that the multi-objective

algorithm (NSGA-II) has similar running times for the 3- and 5-

Table 3. Median IGD and NF values on 31 runs (best values are in bold). ~ means a large value that is not interesting to

show. The results were statistically significant on 31 independent runs using the Wilcoxon rank sum test with a 99%

confidence level (α < 1%).

Problem M MaxGen NSGA-III

 NF IGD

IBEA

NF IGD

MOEA/D

NF IGD

NSGA-II

NF IGD

ArgoUML

v0.26

3 400 69% 1.356 x 10-3 67% 1.358 x 10-3 69% 1.359 x 10-3 67% 1.356 x 10-3

5 600 83% 3.918 x 10-3 79% 4.001 x 10-3 81% 4.007 x 10-3 54% 4.423 x 10-3

8 750 86% 4.115 x 10-3 82% 4.327 x 10-3 84% 4.331 x 10-3 42% ~

10 1000 89% 1.727 x 10-2 84% 2.124 x 10-2 87% 2.001 x 10-2 37% ~

15 1500 96% 3.302 x 10-2 81% 3.826 x 10-2 84% 3.733 x 10-2 34% ~

Xerces v2.7 3 400 64% 9.751 x 10-4 64% 9.754 x 10-4 64% 9.753 x 10-4 62% 9.752 x 10-4

5 600 78% 7.876 x 10-3 76% 7.910 x 10-3 74% 7.912 x 10-3 56% 8.006 x 10-3

8 750 84% 8.001 x 10-3 81% 8.422 x 10-3 81% 8.428 x 10-3 48% ~

10 1000 92% 2.115 x 10-2 86% 2.410 x 10-2 86% 2.299 x 10-2 44% ~

15 1500 94% 4.666 x 10-2 86% 5.198 x 10-2 84% 4.935 x 10-2 39% ~

ArgoUML

v0.3

3 400 63% 2.667 x 10-3 63% 2.668 x 10-3 66% 2.668 x 10-3 63% 2.667 x 10-3

5 600 79% 4.283 x 10-3 76% 4.291 x 10-3 78% 4.294 x 10-3 51% 4.524 x 10-3

8 750 91% 5.545 x 10-3 84% 5.701 x 10-3 86% 5.716 x 10-3 47% ~

10 1000 94% 3.339 x 10-2 87% 3.601 x 10-2 89% 3.477 x 10-2 39% ~

15 1500 98% 6.001 x 10-2 89% 6.554 x 10-2 87% 6.399 x 10-2 34% ~

Ant-Apache

v1.5

3 400 68% 3.854 x 10-4 66% 3.857x 10-4 66% 3.856x 10-4 68% 3.856x 10-4

5 600 76% 4.678 x 10-4 76% 4.702 x 10-4 78% 4.709 x 10-4 52% 5.035 x 10-4

8 750 88% 6.111 x 10-4 81% 6.308 x 10-4 83% 6.313 x 10-4 46% ~

10 1000 93% 2.861 x 10-3 84% 3.008 x 10-3 86% 2.999 x 10-3 34% ~

15 1500 97% 5.928 x 10-3 82% 6.478 x 10-3 81% 6.399 x 10-3 31% ~

Ant-Apache

v1.7.0

3 400 61% 4.326 x 10-3 61% 4.328 x 10-3 63% 4.329 x 10-3 62% 4.327 x 10-3

5 600 73% 5.612 x 10-3 69% 5.692 x 10-3 71% 5.694 x 10-3 53% 6.001 x 10-3

8 750 86% 6.269 x 10-3 84% 6.516 x 10-3 82% 6.521 x 10-3 48% ~

10 1000 89% 4.007 x 10-2 87% 4.301 x 10-2 84% 4.147 x 10-2 37% ~

15 1500 92% 7.006 x 10-2 84% 7.840 x 10-2 81% 7.688 x 10-2 31% ~

Gantt v1.10.2 3 400 63% 5.111 x 10-3 64% 5.113 x 10-3 63% 5.114 x 10-3 66% 5.111 x 10-3

5 600 69% 6.601 x 10-3 67% 6.702 x 10-3 69% 6.701 x 10-3 54% 6.956 x 10-3

8 750 88% 7.899 x 10-3 83% 8.101 x 10-3 81% 8.116 x 10-3 44% ~

10 1000 93% 3.333 x 10-2 84% 3.637 x 10-2 86% 3.536 x 10-2 37% ~

15 1500 97% 5.807 x 10-2 82% 6.202 x 10-2 83% 6.125 x 10-2 28% ~

Azureus

v2.3.0.6

3 400 61% 6.429 x 10-4 64% 6.432 x 10-4 61% 6.431 x 10-4 64% 6.431 x 10-4

5 600 78% 6.708 x 10-4 72% 6.782 x 10-4 75% 6.788 x 10-4 47% 6.991 x 10-4

8 750 84% 6.976 x 10-4 80% 7.205 x 10-4 82% 7.212 x 10-4 34% ~

10 1000 91% 2.745 x 10-3 84% 2.976 x 10-3 87% 2.877 x 10-3 26% ~

15 1500 94% 4.981 x 10-3 81% 5.508 x 10-3 78% 5.394 x 10-3 26% ~

1268

Author Preprint

objective cases. However, for higher numbers of objectives NSGA-III

is faster than IBEA. This observation could be explained by the

computational effort required to compute the contribution of each

solution in terms of hypervolume. In comparison to MOEA/D,

MOEA/D is slightly faster than NSGA-III since it does not make use

of non-dominated sorting.

Figure 4. Median NF values on 31 independent runs using 7

systems comparing NSGA-III and two mono-objective approaches

[19][23].

Figure 5. Median UR (semantic coherence) values on 31

independent runs using 7 systems comparing NSGA-III and two

mono-objective approaches [19][23].

Quality improvements vs. number of objectives:

One of the main motivations of our work is to propose a scalable

search-based software engineering approach that can address

software engineering problems with a large number of objectives to

be optimized. Thus, we evaluated the impact of taking into

consideration a higher number of objectives (metrics) on the quality

of the refactoring solutions. In fact, the symptoms of code smells can

be formalized in terms of quality metrics, thus if we consider more

metrics in evaluating a refactoring solution there is a better chance

that more code smells are fixed. Figure 5 confirms this. The

percentage of fixed code smells increases from 63% to 98% as the

number of objectives/metrics increases from 3 to 15 objectives. This

result allows us to affirm RQ3.

Figure 6. Median CT values on 31 independent runs using 7

systems comparing NSGA-III and two mono-objective

approaches.

Figure 7. Median NF values on 31 independent runs using

ArgoUML v 0.3 with 3, 5, 8, 10 and 15 objectives.

5. RELATED WORK
Search-based refactoring represents fully automated refactoring

driven by metaheuristic search and guided by software quality metrics

and used subsequently to address the problem of automating design

improvement [23]. Seng et al. [27] propose a search-based technique

that uses a genetic algorithm over refactoring sequences. The

employed metrics are mainly related to various class level properties

such as coupling, cohesion, complexity and stability. The approach

was limited only to the use of one refactoring operation type, namely

'move method'. In contrast to O’Keeffe et al. [23], their fitness

function is based on well-known measures of coupling between

program components. Both these approaches use weighted-sum to

combine metrics into a fitness function, which is of practical value

but is a questionable operation on ordinal metric values. Kessentini et

al. [19] also propose a single-objective combinatorial optimization

using a genetic algorithm to find the best sequence of refactoring

operations that improve the quality of the code by minimizing as

much as possible the number of code smells detected using a set of

quality metrics. Kilic et al. explore the use of a variety of population-

based approaches to search-based parallel refactoring, finding that

local beam search could find the best solutions. Harman and Tratt

were the first to introduce the concept of Pareto optimality to search-

based refactoring [14]. They use it to combine two metrics into a

fitness function, namely CBO (coupling between objects) and

SDMPC (standard deviation of methods per class), and demonstrate

1269

Author Preprint

that it has several advantages over the weighted-sum approach. More

recent work on multi-objective search-based refactoring is the work

by Ouni et al. [24] who propose a multi-objective optimization

approach to find the best sequence of refactorings using NSGA-II.

The proposed approach is based on two objective functions, quality

(proportion of corrected code smells) and code modification effort, to

recommend a sequence of refactorings that provide the best trade-off

between quality and effort.

6. CONCLUSIONS AND FUTURE WORK
This paper represents the first real-world application of NSGA-III

and the first scalable work that supports the use of 15 objectives to
address a software engineering problem. In our approach, refactoring
solutions are evaluated using a set of 15 software quality metrics. We
evaluated our approach on seven large open source systems
[28][29][30][31][32]. The experimental results indicate that NSGA-

III outperforms other many-objective algorithms (IBEA [31] and

MOEA/D [30]), NSGA-II and mono-objective evolutionary

algorithms [19][23]. As part of the future work, we plan to work on

adapting NSGA-III to additional software engineering problems and
we will perform more comparative studies on larger open source
systems.

ACKNOWLEDGEMENT
This work was supported, in part, by the Institute for Advanced

Vehicle Systems-Michigan grant and the Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre.

7. REFERENCES
[1] Arcuri A. and Fraser G., 2013. Parameter tuning or default values? An

empirical investigation in search-based software engineering,

Empirical Software Engineering, 18(3).

[2] Bader, J. and Zitzler, E. 2011. Hype: An algorithm for fast

hypervolumebased many-objective optimization. In Evolutionary

Computation. vol. 19, no. 1. 45–76.

[3] Bechikh, S., Ben Said, L. and Ghédira, K. 2010. Estimating Nadir Point

in Multi-objective Optimization using Mobile Reference Points. In

CEC’10. 2129–2137.

[4] Brown, W. J., Malveau, R. C., Brown, W. H., and Mowbray, T. J. 1998.

Anti Patterns: Refactoring Software, Architectures, and Projects in

Crisis. John Wiley and Sons, 1st Ed.

[5] Deb, K. 2001. Multiobjective Otpimization using Evolutionary

Algorithms. John Wiley and Sons, Ltd, New York, USA.

[6] Deb, K. and Jain H. 2012. Handling many-objective problems using an

improved NSGA-II procedure. In Proceedings of IEEE Congress on

Evolutionary Computation. 1–8.

[7] Deb, K. and Jain, H. An Evolutionary Many-Objective Optimization

Algorithm Using Reference-point Based Non-dominated Sorting

Approach, Part I: Solving Problems with Box Constraints. In

Proceedings of IEEE Transactions on Evolutionary Computation.

accepted.

[8] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. 2002. A Fast and

Elitist Multiobjective Genetic Algorithm: NSGA-II. In Proceedings of.

IEEE Transactions on Evolutionary Computation, vol. 6, no. 2. 182–

197.

[9] di Pierro, F., Khu, S-T. and Savic, D.A. 2007. An Investigation on

Preference Order Ranking Scheme for Multiobjective Evolutionary

Optimization. In Proceedings of IEEE Transactions on Evolutionary

Computation. vol. 11, no. 1. 17–45.

[10] Fenton, N. and Pfleeger, S. L. 1997. Software Metrics: A Rigorous and

Practical Approach, 2nd ed. International Thomson Computer Press.

[11] Ferrucci, F., Harman, M., Ren, J. and Sarro, F. 2013. Not going to take

this anymore: multi-objective overtime planning for software

engineering projects. In ICSE '13, 462-471.

[12] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. 1999.

Refactoring – Improving the Design of Existing Code. 1st ed. Addison-

Wesley.

[13] Harman, M. 2013. Software Engineering: An Ideal Set of Challenges for

Evolutionary Computation, In GECCO '13, 1759-1760.

[14] Harman, M. and Tratt, L. 2007. Pareto optimal search based refactoring

at the design level. In GECCO’07. 1106–1113.

[15] Harman, M., Mansouri, S. A. and Zhang, Y. 2012. Search-based

software engineering: Trends, techniques and applications. In ACM

Computing Surveys. vol. 45, no.1. 61 pages.

[16] Harman, M., and Jones, B., 2001. Search Based Software Engineering,

Journal of Information and Software Technology, 43(14):833-839.

[17] Jaimes, A. L., Coello Coello, C.A. and Barrientos, J. E. U. 2009. Online

Objective Reduction to Deal with Many-objective Problems. In the 5th

international conference on Evolutionary Multicriterion Optimization.

423–437.

[18] Jain, H. and Deb, K. 2013. An Improved Adaptive Approach for Elitist

Nondominated Sorting Genetic Algorithm for Many-Objective

Optimization. In EMO’13, 307–321.

[19] Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., and

Ouni, A. 2011. Design Defects Detection and Correction by Example. In

ICPC’11. 81-90.

[20] Kukkonen, S. and Lampinen, J. 2007. Ranking-Dominance and Many-

Objective Optimization. In Proceedings of IEEE Congress on

Evolutionary Computation. 3983-3990.

[21] Moha, N., Guéhéneuc, Y.-G., Duchien, L. and Le Meur, A.-F. 2009.

DECOR: A Method for the Specification and Detection of Code and

Design Smells. In TSE, 2009, vol 12,. 20–36.

[22] Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S. and Moghadam, I.

H. 2012. Experimental Assessment of Software Metrics Using

Automated Refactoring. In ESEM’12, 49-58.

[23] O'Keeffe, M. K. and Ó Cinnéide, M. 2008. Search-based refactoring for

software maintenance. In Journal of Systems and Software. vol. 81,

no.4. 502-516.

[24] Ouni, A., Kessentini, M., Sahraoui, H. and Boukadoum, M. 2012.

Maintainability Defects Detection and Correction: A Multi-Objective

Approach. Journal of Automated Software Engineering. vol. 20, 47-79.

[25] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A. and

Poshyvanyk, D. 2013. Detecting Bad Smells in Source Code Using

Change History Information. In ASE 2013.

[26] Sayyad, A., Menzies, T. and Ammar, H. 2013. On the value of user

preferences in search-based software engineering: a case study in

software product lines. In ICSE '13. 492-501.

[27] Seng, O., Stammel, J. and Burkhart, D. 2006. Search-based

determination of refactorings for improving the class structure of object-

oriented systems. In GECCO’06. 1909–1916.

[28] Singh, H. K., Isaacs, A. and Ray, T. 2011. A pareto corner search

evolutionary algorithm and dimensionality reduction in many-objective

optimization problems. In Proceedings of IEEE Transactions on

Evolutionary Computation. vol. 99. 1–18.

[29] Yamashita A., and Moonen, L., 2012. Do code smells reflect important

maintainability aspects?, Proceedings of ICSM2012.

[30] Zhang, Q. and Li, H. 2007. MOEA/D: A Multiobjective Evolutionary

Algorithm Based on Decomposition. In Proceedings of IEEE

Transactions on Evolutionary Computation. vol. 11, no. 6. 712–731.

[31] Zitzler, E. and Künzli, S. 2004. Indicator-based selection in

multiobjective search Parallel Problem Solving from Nature. In

Proceedings of PPSN’04.

[32] (Refactorings in Alphabetical Order). [Online]. Available:

http://www.refactoring.com/catalog/index.html

1270

Author Preprint

http://www.csi.ucd.ie/users/mel-o-cinneide
http://tratt.net/laurie/
http://www0.cs.ucl.ac.uk/staff/M.Harman/
http://www.brunel.ac.uk/siscm/disc/people-in-disc/academic-staff/drstevecounsell

