
Software Refactoring Under Uncertainty:
A Robust Multi-Objective Approach

Wiem Mkaouer, Marouane
Kessentini, Slim Bechikh
University of Michigan, USA
firstname@umich.edu

Mel Ó Cinnéide
University College Dublin, Ireland.

mel.ocinneide@ucd.ie

Kalyanmoy Deb
Michigan State University, USA.

kdeb@egr.msu.edu

ABSTRACT
Refactoring large systems involves several sources of uncertainty
related to the severity levels of code smells to be corrected and the
importance of the classes in which the smells are located. Due to the
dynamic nature of software development, these values cannot be
accurately determined in practice, leading to refactoring sequences
that lack robustness. To address this problem, we introduced a multi-
objective robust model, based on NSGA-II, for the software
refactoring problem that tries to find the best trade-off between
quality and robustness.

Categories and Subject Descriptors
D.2 [Software Engineering].

General Terms
Algorithms, Reliability.

Keywords
Search-based software engineering, software quality, code smells,
robust optimization.

1. INTRODUCTION
Large-scale software systems exhibit high complexity and

become difficult to maintain. It has been reported that the cost of
maintenance and evolution activities comprises more than 80% of
total software costs. In addition, it has been shown that software
maintainers spend around 60% of their time in understanding the
code. To facilitate maintenance tasks, one of the widely used
techniques is refactoring which improves design structure while
preserving the overall functionality of the software.

There has been much work on different techniques and tools for
refactoring [2][3][4].The vast majority of these techniques identify
key symptoms that characterize the code to refactor using a
combination of quantitative, structural, and/or lexical information
and then propose different possible refactoring solutions, for each
identified segment of code. In order to find out which parts of the
source code need to be refactored, most of the existing work relies on
the notion of design defects or code smells. The generic term code
smell refers to structures in the code that suggest the possibility of
refactoring. Once code smells have been identified, refactorings need
to be proposed to resolve them. Several automated refactoring
approaches are proposed in the literature and most of them are based
on the use of software metrics to estimate quality improvements of
the system after applying refactorings.

The existing literature on software refactoring invariably ignores
an important consideration when suggesting refactoring solutions: the
highly dynamic nature of software development. In this paper, we
take into account two dynamic aspects as follows:
 Code Smell Severity: This is the severity level assigned to a code

smell type by a developer. It usually varies from developer to
developer, and indeed a developer’s assessment of smell severity
will change over time as well.

 Code Smell Class Importance: This is the importance of a class
that contains a code smell, where importance refers to the number
and size of the features that the class supports. A code smell with
large class importance will have a greater detrimental impact on
the software. Again, this property will vary over time as software
requirements change and classes are added/deleted/split.

Existing approaches to the refactoring problem assume a static
environment to the problem, i.e., that all detected code smells are of
the same severity and that the importance of the class in which is the
code smell is situated is not liable to change.

We believe that the uncertainties related to class importance and
code smell severity need to be taken into consideration when
suggesting a refactoring solution. To this end, we introduce in this
paper a novel representation of the code refactoring problem, based
on robust optimization [1] that generates robust refactoring solutions
by taking into account the uncertainties related to code smell severity
and the importance of the class that contains the code smell. Our
robustness model is based on the well-known multi-objective
evolutionary algorithm NSGA-II and considers possible changes in
class importance and code smell severity by generating different
scenarios at each iteration of the algorithm. In each scenario, the
detected code smell to be corrected is assigned a severity score and
each class in the system is assigned an importance score. In our
model, we assume that these scores change regularly due to reasons
such as developers’ evolving perspectives on the software or new
features and requirements being implemented or any other code
changes that could make some classes/code smells more or less
important. Our multi-objective approach aims to find the best trade-
off between maximizing the quality of the refactoring solution in
terms of the number of code smells corrected and maximizing its
robustness in terms of the severity of the code smells corrected and
the importance of the classes that contains the code smells.

The remainder of this paper is structured as follows. Section 2
provides the background required to understand our approach and the
nature of the refactoring challenge. In Section 3, we describe robust
optimization and explain how we formulate software refactoring as a
robust optimization problem. Section 4 presents and discusses the
results obtained by applying our approach to six large open-source
projects. Related work is discussed in Section 5, while in Section 6
we conclude and suggest future research directions.

2. MULTI-OBJECTIVE ROBUST
SOFTWARE REFACTORING
The refactoring problem involves searching for the best refactoring
solution among the set of candidate ones, which constitutes a huge
search space. A refactoring solution is a sequence of refactoring

187

Author Preprint

operations where the goal of applying the sequence to a software
system S is typically to minimize the number of code smells in S. As
outlined in the Introduction, in a real-world setting code smell
severity and class importance are not certainties. A refactoring
sequence that resolves the smells that one developer rates as severe
may not be viewed as effective by another developer with a different
outlook on smells. Similarly, a refactoring sequence that fixes the
smells in a class that is subsequently deleted in the next commit is
not of much value.

To address these issues, we propose a robust formulation of the
refactoring problem that takes class importance and smell severity
into account. Consequently, we have two objective functions to be
maximized in our problem formulation: (1) the quality of the system
to refactor, i.e., minimizing the number of code smells, and (2) the
robustness of the refactoring solutions in relation to uncertainty in the
severity level of the code smells and in the importance of the classes
that contain the code smells. Analytically speaking, the formulation
of the robust refactoring problem can be stated as follows:
Maximize

f1(x, S) NCCS(x, S) NDCS (S)

f2 (x, S) [SmellSeverity(CCSi, x, S)
i1

NCCS

 Importance(CCSi, x, S)]

subject to x (x1,..., xn) X

where X is the set of all legal refactoring sequences starting from S, xi
is the i-th refactoring in the sequence x, NCCS(x,S) is the Number of
Corrected Code Smells after applying the refactoring solution x on
the system S, NDCS is the Number of Detected Code-Smells prior to
the application of solution x to the system S, CCSi is the i-th
Corrected Code Smell, SmellSeverity(CCSi, x, S) is the severity level
of the i-th corrected code smell related to the execution of x on S, and
Importance(CCSi, x, S) is the importance of the class containing the i-
th code smell corrected by the execution of x on S.

The smell’s severity level is a numeric quantity, varying between
0 and 1, assigned by the developer to each code smell type (e.g.,
blob, spaghetti code, functional decomposition, etc.). We define the
class importance of a code smell as follows:

Importance(CCSi, x, S) (NC / MaxNC(S)) (NR / MaxNR(S)) (NM / MaxNM (S))

3

such that NC/NR/NM correspond respectively to the Number of
Comments/Relationships/Methods related to the CCSi and
MaxNC/MaxNR/MaxNM correspond respectively to the Maximum
Number of Comments/Relationships/Methods of any class in the
system S. There are of course many ways in which class importance
could be measured, and one of the advantages of the search-based
approach is that this definition could be easily replaced with a
different one. In summary, the basic idea behind this work is to
maximize the resistance of the refactoring solutions to perturbations
in the severity levels and class importance of the code smells while
maximizing simultaneously the number of corrected code smells.
These two objectives are in conflict with each other since the quality
of the proposed refactoring solution usually decreases when the
environmental change (smell severity and/or class importance)
increases. Thus, the goal is to find a good compromise between (1)
quality and (2) robustness. This compromise is directly related to
robustness cost, as discussed above. In fact, once the bi-objective
trade-off front (quality, robustness) is obtained, the user can navigate
through this front in order to select his/her preferred refactoring
solution. This is achieved through sacrificing some degree of solution
quality while gaining in terms of robustness. In this way, the user can
seek his/her preferred solution based on the robustness cost metric
corresponding to the loss in terms of quality for achieving robustness.

3. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a novel formulation of the

refactoring problem that takes into account the uncertainties related
to code smell correction in the dynamic environment of software
development where code smell severity and class importance cannot
be regarded as fixed. Code smell severity will vary from developer to
developer and the importance of the class that contains the smell will
vary as the code base itself evolves.

Future work involves extending our approach to handle
additional code smell types in order to test further the general
applicability of our methodology. In this paper, we focused on the
use of a structural metric to estimate class importance, but this can be
extended to consider also the pattern of repository submits to achieve
another perspective on class importance. In a similar vein, our notion
of smell severity assumes each smell type has a certain severity, but a
more realistic model is to allow each individual smell instance to be
assigned its own severity. If further experiments confirm our
observation that the knee point is indeed a trademark of the quality-
robustness trade-off frontier for all software refactoring problems,
then it would be interesting to apply straightway a knee-finding
algorithm to the bi-objective problem and determine if it yields any
computational benefit. In an interactive software refactoring tool, the
potential speed-up might be critical to success. Overall the use of
robustness as a helper objective in the software refactoring task opens
up a new direction of research and application with the possibility of
finding new and interesting insights about the quality and severity
trade-off in the refactoring problem.

ACKNOWLEDGEMENT
This work was supported, in part, by the Institute for Advanced

Vehicle Systems-Michigan grant and the Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre

4. REFERENCES
[1] G. Antoniol, M. Di Penta, and M. Harman. A Robust Search-

Based Approach to Project Management in the Presence of
Abandonment, Rework, Error and Uncertainty. 2004. In
Proceedings of the Software Metrics, 10th International
Symposium (METRICS '04). IEEE Computer Society,
Washington, DC, USA, 172-183.
DOI=10.1109/METRICS.2004.4
http://dx.doi.org/10.1109/METRICS.2004.4

[2] M. Harman; and L. Tratt. 2007. Pareto optimal search based
refactoring at the design level. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation (GECCO
'07). ACM, New York, NY, USA, 1106-1113.
DOI=10.1145/1276958.1277176
http://doi.acm.org/10.1145/1276958.1277176.

[3] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and
A. Ouni. Design Defects Detection and Correction by Example.
2011. In Proceedings of the 19th International Conference on
Program Comprehension (ICPC’11). 81-90.

[4] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum. 2012.
Maintainability Defects Detection and Correction: A Multi-
Objective Approach. Journal of Automated Software
Engineering. Springer. vol. 20, no. 1, 47-79. DOI=
10.1007/s10515-011-0098-8

188

Author Preprint

