
Author Preprint

On the use of many quality attributes for software
refactoring: a many-objective search-based software
engineering approach

Mohamed Wiem Mkaouer1 & Marouane Kessentini1 &

Slim Bechikh1
& Mel Ó Cinnéide2 & Kalyanmoy Deb3

Abstract Search-based software engineering (SBSE) solutions are still not scalable enough to
handle high-dimensional objectives space. The majority of existing work treats software
engineering problems from a single or bi-objective point of view, where the main goal is to
maximize or minimize one or two objectives. However, most software engineering problems
are naturally complex in which many conflicting objectives need to be optimized. Software
refactoring is one of these problems involving finding a compromise between several quality
attributes to improve the quality of the system while preserving the behavior. To this end, we
propose a novel representation of the refactoring problem as a many-objective one where every
quality attribute to improve is considered as an independent objective to be optimized. In our
approach based on the recent NSGA-III algorithm, the refactoring solutions are evaluated
using a set of 8 distinct objectives. We evaluated this approach on one industrial project and
seven open source systems. We compared our findings to: several other many-objective
techniques (IBEA, MOEA/D, GrEA, and DBEA-Eps), an existing multi-objective approach

Empir Software Eng

* Mohamed Wiem Mkaouer
mmkaouer@umich.edu

Marouane Kessentini
marouane@umich.edu

Slim Bechikh
sbechikh@umich.edu

Mel Ó Cinnéide
mel.ocinneide@ucd.ie

Kalyanmoy Deb
kdeb@egr.msu.edu

1 University of Michigan, Dearborn, MI, USA
2 University College Dublin, Dublin, Ireland
3 Michigan State University, East Lansing, MI, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-015-9414-4&domain=pdf

Author Preprint

a mono-objective technique and an existing refactoring technique not based on heuristic
search. Statistical analysis of our experiments over 31 runs shows the efficiency of our
approach.

Keywords Search-basedsoftwareengineering .Refactoring .Softwarequality.Many-objective
optimization

1 Introduction

Search-based software engineering (SBSE) studies the application of meta-heuristic optimiza-
tion techniques to software engineering problems (Harman and Jones 2001). Once a software
engineering task is framed as a search problem, by defining it in terms of solution represen-
tation, objective function, and solution change operators, there are a multitude of search
algorithms that can be applied to solve that problem. Search-based techniques are widely
applied to solve software engineering problems such as in testing, modularization, refactoring,
planning, etc. (Harman 2013; Harman and Tratt 2007; Harman et al. 2012).

Based on a recent SBSE survey (Harman et al. 2012), the majority of existing work
treats software engineering (SE) problems from a single-objective point of view, where the
main goal is to maximize or minimize one objective, e.g., correctness, quality, etc.
However, most SE problems are naturally complex in which many conflicting objectives
need to be optimized such as model transformation, design quality improvement, test suite
generation etc. The number of objectives to consider for most of software engineering
problems is, in general, high (more than three objectives); such problems are termed many-
objective. We claim that the reason that software engineering problems have not been
formulated as many-objective problems is because of the challenges in constructing a
many-objective solution. In this context, the use of traditional multi-objective techniques,
e.g., NSGA-II (Deb et al. 2002), widely used in SBSE, is clearly not sufficient (Deb and
Jain 2012).

There is a growing need for scalable search-based software engineering approaches
that address software engineering problems where a large number of objectives are to
be optimized. Recent work in optimization has proposed several solution approaches to
tackle many-objective optimization problems (Jaimes et al. 2009; Zhang and Li 2007)
using e.g., objective reduction, new preference ordering relations, decomposition, etc.
However, these techniques have not yet been widely explored in SBSE (Harman et al.
2012). To the best of our knowledge and based on recent SBSE surveys (Harman et al.
2012), very few studies used many-objective techniques to address software engineer-
ing problems such as the work proposed by Sayyad et al. (2013a) that uses a many-
objective approach, IBEA (Indicator-Based Evolutionary Algorithm) (Zitzler and Künzli
2004), to address the problem of software product line creation. However, the number
of considered objectives is limited to five. In our recent work (Mkaouer et al. 2014),
we proposed a many-objective approach for software refactoring using a set of 15
quality metrics as separate objectives. Software refactoring is one of those software
engineering problems that require several quality objectives to be satisfied. Although,
the approach has given promising results, some limitations have been raised, investi-
gated and resulted in this extension that copes with the following concerns: the choice
of using of 15 metrics as separate objectives, at the expense of higher computational

Empir Software Eng

https://www.researchgate.net/publication/2526557_A_fast_and_elitist_multi-objective_genetic_algorithm_NSGAII?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262868005_Search-Based_Software_Engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221228535_Online_Objective_Reduction_to_Deal_with_Many-Objective_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552506_High_Dimensional_Search-based_Software_Engineering_Finding_Tradeoffs_among_15_Objectives_for_Automating_Software_Refactoring_Using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261192670_On_the_value_of_user_preferences_in_search-based_software_engineering_A_case_study_in_software_product_lines?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3418989_MOEAD_A_Multiobjective_Evolutionary_Algorithm_Based_on_Decomposition?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint

complexity and higher number of solutions, made the benefit of selecting good refactoring
solutions unclear due to conflict uncertainty between some objectives and the difficult inter-
pretation of their metric values. Another limitation of our previous work is the exclusive
optimization of the system’s structure without taking into consideration the semantic coherence
of its actors (classes, methods, attributes). Furthermore, one of the main objectives of Pareto-
optimality is to allow the user to choose among equivalent solutions the one(s) that satisfies
better his/her preferred objectives. However, in our context, it is harder to ask a developer to
express his preference in terms of 15 internal quality attributes, so it is difficult for developers to
select a solution from the high number of non-dominated refactoring solutions.

To address the above challenges, we propose to extend our previous work using a different
many-objective formulation. We assume that it would be more convenient for developers to
formulate their quality preferences in terms of external quality attributes such as reusability,
flexibility and understandability instead of a large number of quality metrics (O’Keeffe and Ó
Cinnéide 2008; Bansiya and Davis 2002). Thus, the goal of improving the software overall
quality is still maintained while the number of objectives has been reduced. This is being done
through the aggregation of metrics, previously optimized separately, into 8 objectives de-
scribed as external quality attributes. This representation helps in analyzing the impact of
applying refactoring operations on raising the conflicts between these objectives during the
solution evolution. Thus, we propose in this paper to formulate the refactoring problem using
the quality attributes of QMOOD as objectives (Bansiya and Davis 2002) along with the
number of refactorings and design coherence preservation. To this end, we adapted the many-
objective algorithm NSGA-III (Jain and Deb 2014). NSGA-III is a many-objective algorithm
proposed by Deb and Jain (2013). The basic framework remains similar to the original NSGA-
II algorithm (Deb et al. 2002), with significant changes in its selection mechanism. We
implemented our approach and evaluated it on seven large open source systems and one
industrial project provided by our industrial partner. We compared our findings to: several
other many-objective techniques, an existing multi-objective approach (Ouni et al. 2012a), a
mono-objective technique (Kessentini et al. 2011) and an existing refactoring technique not
based on heuristic search (Tsantalis et al. 2008). Statistical analysis of our experiments over 31
runs shows the efficiency of our approach.

The primary contributions of this paper can be summarized as follows:

(1) The paper introduces a novel formulation of the refactoring problem through several
objectives using NSGA-III.

(2) The paper reports the results of an empirical study with an implementation of our many-
objective approach. The obtained results provide evidence to support the claim that our
proposal is more efficient, on average, than several existing refactoring techniques based
on a benchmark of seven open source systems and one industrial project. The paper also
evaluates the relevance and usefulness of the suggested refactoring for software engineers
in improving the quality of their systems.

The remainder of this paper is structured as follows. Section 2 provides background and an
overview of many-objective optimization techniques and potential applications to software
engineering problems. Section 3 describes our adaptation of NSGA-III to automate code
refactoring and the results obtained from our experiment are presented then discussed in
Sections 4 and 5. Threats to validity are described in Section 6. Section 7 ends this paper
with concluding remarks and future work.

Empir Software Eng

Author Preprint

2 Background and related work

2.1 Software refactoring

Refactoring is defined as the process of improving code after it has been written by changing
its internal structure without changing its external behavior. The idea is to reorganize variables,
classes and methods to facilitate future adaptations and extensions and enhance comprehen-
sion. This reorganization is used to improve different aspects of software quality such as
maintainability, extensibility, reusability, etc. Some modern Integrated Development
Environments (IDEs), such as Eclipse, NetBeans, provide semi-automatic support for applying
the most commonly used refactorings, e.g., move method, rename class, etc. However,
automatically suggesting/deciding where and which refactorings to apply is still a real
challenge in Software Engineering. In order to identify which parts of the source code need
to be refactored, most existing work relies on the notion of code smells (e.g., Fowler’s
textbook (Fowler et al. 1999)), also called design defects or anti-patterns (Brown et al. 1998).

The impact of code smells on software systems has been the subject of several studies over
the past decade since their first introduction by Fowler et al. (1999). They defined 22 code
smells as structural code flaws that may decrease the overall software quality and serve as
indicators to potential issues related to software evolution and maintenance. To cope with these
smells, Fowler has introduced a set of 72 Refactoring operations to fix code smells and thus
improving the system overall design.

The detection process can either be manual, semi-automated or fully automated. Mäntylä
et al. (2003) provided an initial formulization of the code smells, in terms of metrics, based on
analyzing Fowler’s smells description, they studied the correlation between the smells and
provided a classification according to their similarity. Mäntylä revealed that the manual
detection of smells is dependent to the level of expertise of detection performers, which
represents one of the main limitations of this approach. Marinescu (2004) presented an
automated framework for smells identification using detection strategies which are defined
by metric-based rules. Moha et al. (2009) presented a semi-automated technique called
DECOR. This framework allows subjects to manually suggest their own defects through their
description with domain specific language, then the framework automatically searches for
smells and visually reports any finding. Most of the above mentioned work focuses mainly on
smells specification in order to improve their detection, for the correction step, their proposals
were limited to guidance on how to manually manage these smells by suggesting refactoring
recommendations according to detected smell’s type.

There is a growing interest in the area of identifying refactoring opportunities. Similar to the
detection’s state of art, refactoring techniques can be either manual, semi-automated or fully
automated. Fowler et al. (1999) manually linked a set of suggested refactorings (Move
Attribute, Extract Class, Move Method etc.) with each identified smell. Van Emden &
Moonen (2002) focused on the detection of two code smells related to the Java language and
suggested their specific correction. (Martin 2000) has used patterns to cope with the poor
system design in presence of code smells. Mäntylä proposed refactoring solutions based on
developers’ opinions and driven by an automatic detection of structural anomalies at the source
code level. Counsell et al. (2006) refined Fowler’s suggested refactorings by prioritizing some
refactorings in the execution order. Piveta el al. (2006) discussed when refactoring opportunities
are eventually needed when detecting bad smells in aspect-oriented software. (Meananeatra
2012) presented another semi-automated heuristic for refactoring, it generates a graph or

Empir Software Eng

Author Preprint

refactoring sequences that are being refined using three main objectives to minimize number of
code smells, number of refactorings and number of refactored code elements.

JDeodorant (Tsantalis et al. 2008) is an automated refactoring tool implemented as an
Eclipse plug-in that identifies some types of design defects using quality metrics and then
proposes a list of refactoring strategies to fix them. Du Bois et al. (2004) has investigated
decreasing coupling and increasing cohesion metrics through the refactoring opportunities and
used them to perform an optimal distribution of features over classes. They analyze how
refactorings manipulate coupling and cohesion metrics, and how to identify refactoring
opportunities that improve these metrics. However, this approach is limited to only some
possible refactoring operations with few number of quality metrics. Murphy-Hill (2006; Ge
and Murphy-Hill 2011, 2014) proposed several techniques and empirical studies to support
refactoring activities. In (Murphy-Hill 2006) the authors proposed new tools to assist software
engineers in applying refactoring such as selection assistant, box view, and refactoring
annotation based on structural information and program analysis techniques. Recently, in
(Ge and Murphy-Hill 2014) the authors have proposed a new refactoring tool called
GhostFactor that allows the developer to transform code manually, but check the correctness
of the transformation automatically. BeneFactor (Ge and Murphy-Hill 2011) and WitchDoctor
(Foster et al. 2012) can detect manual refactorings and then complete them automatically.
Tahvildari et al. (2003) also proposed a framework of object-oriented metrics used to suggest
to the software engineer refactoring opportunities to improve the quality of an object-oriented
legacy system. Dig (2011) proposed an interactive refactoring technique to improve the
parallelism of software systems. Other contributions are based on rules that can be expressed
as assertions (invariants, pre- and post-conditions). Kataoka et al. (2001) used invariants in the
detection and extraction of source code fragments in need of refactoring.

Search-based refactoring represents fully automated refactoring driven by metaheuristic
search and guided by software quality metrics and used subsequently to address the problem of
automating design improvement. Seng et al. (2006) propose a search-based technique that uses
a genetic algorithm over refactoring sequences. The employed metrics are mainly related to
various class level properties such as coupling, cohesion, complexity and stability. The
approach was limited only to the use of one refactoring operation type, namely ‘move
method’. In contrast to (O’Keeffe and Ó Cinnéide 2008) their fitness function is based on
well-known measures of coupling between program components. Both these approaches use
weighted-sum to combine metrics into a fitness function, which is of practical value but is a
questionable operation on ordinal metric values. Kessentini et al. (2011) also propose a single-
objective combinatorial optimization using a genetic algorithm to find the best sequence of
refactoring operations that improve the quality of the code by minimizing as much as possible
the number of code smells detected using a set of quality metrics.

Harman and Tratt were the first to introduce the concept of Pareto optimality to search-
based refactoring (Harman and Tratt 2007). They use it to combine two metrics into a fitness
function, namely CBO (coupling between objects) and SDMPC (standard deviation of
methods per class), and demonstrate that it has several advantages over the weighted-sum
approach, and its introduction, several multi-objective techniques have appeared (Ó Cinnéide
M et al. 2012). The work by Ouni et al. (2012a) proposes a multi-objective optimization
approach to find the best sequence of refactorings using NSGA-II. The proposed approach is
based on two objective functions, quality (proportion of corrected code smells) and code
modification effort, to recommend a sequence of refactorings that provide the best trade-off
between quality and effort. In this study, we propose to address the refactoring problem using

Empir Software Eng

Author Preprint

more than two objectives. To this end, we are adapting many objective algorithms that will be
discussed in the next section.

2.2 Many-objective search-based software engineering

Recently many-objective optimization has attracted much attention in Evolutionary Multi-
objective Optimization (EMO) which is one of the most active research areas in evolutionary
computation (Bader and Zitzler 2011). By definition, a many-objective problem is multi-
objective one but with a high number of objectives M, i.e., M>3. Analytically, it could be
stated as follows (Deb 2001):

Min f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;…; f M xð Þ½ �T ; M > 3
g j xð Þ≥0 j ¼ 1;…;P;
hk xð Þ ¼ 0 k ¼ 1;…;Q;
xi
L≤xi≤xiU i ¼ 1;…; n:

8>><
>>: ð1Þ

whereM is the number of objective functions and is strictly greater than 3, P is the number
of inequality constraints, Q is the number of equality constraints, xi

L and xi
U correspond to the

lower and upper bounds of the decision variable xi (i.e., i
th component of x). A solution x

satisfying the (P+Q) constraints is said to be feasible and the set of all feasible solutions
defines the feasible search space denoted by Ω.

In this formulation, we consider a minimization multi-objective problem (MOP) since
maximization can be easily turned to minimization based on the duality principle. Over the
two past decades, several Multi-Objective Evolutionary Algorithms (MOEAs) have been
proposed with the hope to work with any number of objectives M. Unfortunately, It has been
demonstrated that most MOEAs are ineffective in handling such type of problems. For
example, NSGA-II, which is one of the most used MOEAs, compares solutions based on
their non-domination ranks. Solutions with best ranks are emphasized in order to converge to
the Pareto front. WhenM>3, only the first rank may be assigned to every solution as almost all
population individuals become non-dominated with each other. Without a variety of ranks,
NSGA-II cannot keep the search pressure anymore in high dimensional objective spaces.

The difficulty faced when solving a many-objective problems could be summarized as
follows. Firstly, most solutions become equivalent between each other according to the Pareto
dominance relation which deteriorates dramatically the search process ability to converge
towards the Pareto front and the MOEA behavior becomes very similar to the random search
one. Secondly, a search method requires a very high number of solutions (some thousands and
even more) to cover the Pareto front when the number of objectives increases. For instance, it
has been shown that, in order to find a good approximation of the Pareto front for problems
involving 4, 5 and 7 objective functions, the number of required non-dominated solutions is
about 62 500, 1 953 125 and 1 708 984 375 respectively (Jaimes et al. 2009) which makes the
decision making task very difficult. Thirdly, the objective space dimensionality increases
significantly, which makes promising search directions very hard to find. Fourthly, the
diversity measure estimation becomes very computationally costly since finding the neighbors
of a particular solution in high dimensional spaces is very expensive. Fifthly, recombination
operators become inefficient since population members are likely to be widely distant from
each other which yields to children that are not similar to their parents; thereby making the
recombination operation inefficient in producing promising offspring individuals. Finally,

Empir Software Eng

Author Preprint

although it is not a matter that is directly related to optimization, the Pareto front visualization
becomes more complicated, therefore making the interpretation of the MOEA’s results more
difficult for the user.

Recently, researchers have proposed several solution approaches to tackle many-objective
optimization problems. Table 1 illustrates a summary of existing many-objective approaches.
Firstly, we find the objective reduction approach, which involves finding the minimal subset
of objective functions that are in conflict with each other. The main idea is to study the
different conflicts between the objectives. The objective reduction approach attempts to
eliminate objectives that are not essential to describe the Pareto-optimal front (Jaimes et al.
2009). Even when the essential objectives are four or more, the reduced representation of the
problem has a favorable impact on the search efficiency, computational cost, and decision
making. However, although this approach has solved benchmark problems involving up to 20
objectives, its applicability in real world setting is not straightforward and it remains to be
investigated since most objectives are usually in conflict with each other in real problems (Ó
Cinnéide M et al. 2012). Secondly, we have the incorporation of decision maker’s preferences:
When the number of objective functions increases, the Pareto optimal approximation would be
composed by a huge number of non-dominated solutions. Consequently, the selection of the
final alternative would be very difficult for the human decision maker (DM). In reality, the DM
is not interested with the whole Pareto front rather than the portion of the front that best
matches his/her preferences, called the Region of Interest (ROI). The main idea is to exploit the
DM’s preferences in order to differentiate between Pareto equivalent solutions so that we can
direct the search towards the ROI on problems involving more than 3 objectives (Ben Said
et al. 2010). Preference-based MOEAs have demonstrated several promising results. Thirdly,
we find new preference ordering relations. Since the Pareto dominance has the inability to
differentiate between solutions with the increased number of objectives, researchers have
proposed several new alternative relations. These relations try to circumvent the failure of
the Pareto dominance by using additional information such as the ranks of the particular
solution regarding the different objectives and the related population (di Pierro et al. 2007), but
may not be agreeable to the decision makers. Fourthly, we have decomposition. This technique
consists in decomposing the problem into several sub-problems and then solving these sub-
problems simultaneously by exploiting the parallel search ability of evolutionary algorithms.
The most reputable decomposition-based MOEA is MOEA/D (Zhang and Li 2007). Finally,
we find the use of a predefined multiple targeted search. Inspired by preference-based MOEAs
and the decomposition approach, recently, Deb and Jain (Deb and Jain 2013), and Wang et al.
(2013) have proposed a new idea that involves guiding the population during the optimization
process based on multiple predefined targets (e.g., reference points, reference direction) in the
objective space. This idea has demonstrated very promising results on MOPs involving up to
15 objectives.

Harman et al. (2012), stated that most of existing search-based software engineering (SBSE)
related work treats software engineering (SE) problem frommono-objective point of view. As SE
problems are naturally multi-objective, many techniques has been elaborated by handling more
than one objective. However, as the number of objectives scales, non-dominance based method-
ologies’ performance drastically degrades. It has been shown in (Garza-Fabre et al. 2011) that
when the number of objectives goes beyond five, more than 90%of the population becomes non-
dominated to each other which indulges the stagnation of the population at an early stage of its
evolution. In addition, visualization techniques, being widely used in SE, are no longer efficient
in high dimensional problems. Subsequently, many-objective methodologies have been recently

Empir Software Eng

Author Preprint
T
ab

le
1

Su
m
m
ar
y
of

m
an
y-
ob
je
ct
iv
e
ap
pr
oa
ch
es

A
pp
ro
ac
h

B
as
ic
id
ea

E
xa
m
pl
e
al
go
ri
th
m
s

N
o.

of
ob
je
ct
iv
es

R
ea
l
w
or
ld

m
an
y-

ob
je
ct
iv
e
ap
pl
ic
at
io
n

O
bj
ec
tiv

e
re
du
ct
io
n

Fi
nd

th
e
m
in
im

al
su
bs
et
of

co
nf
lic
tin

g
ob
je
ct
iv
es
,t
he
n
el
im

in
at
e
th
e

ob
je
ct
iv
es

th
at
ar
e
no
t
es
se
nt
ia
l
to

de
sc
ri
be

th
e
Pa
re
to

op
tim

al
fr
on
t.

1)
PC

A
-N

SG
A
-I
I
(D

eb
an
d
Sa
xe
na

20
06
)

10
1)

N
ot

fo
un
d

2)
PC

SE
A

(S
in
gh

et
al
.2

01
1)

20
2)

W
at
er

re
so
ur
ce

pr
ob
le
m

In
co
rp
or
at
in
g
de
ci
si
on

m
ak
er
’s
pr
ef
er
en
ce
s

E
xp
lo
it
D
M
’s
pr
ef
er
en
ce
s
in

or
de
r
to

di
ff
er
en
tia
te
be
tw
ee
n
Pa
re
to

eq
ui
va
le
nt

so
lu
tio
ns

so
th
at
w
e

ca
n
di
re
ct
th
e
se
ar
ch

to
w
ar
ds

th
e

re
gi
on

of
in
te
re
st
in
st
ea
d
of

th
e

w
ho
le
fr
on
t.

1)
r-
N
SG

A
-I
I
(B
en

Sa
id

et
al
.2

01
0)

10
1)

Pa
ym

en
t
sc
he
du
lin

g
ne
go
tia
tio

n
pr
ob
le
m

2)
PB

E
A

(T
hi
el
e
et
al
.2

00
9)

10
2)

N
ot

fo
un
d

3)
R
-N

SG
A
-I
I
(D

eb
et
al
.2

00
6)

10
3)

W
el
de
d
be
am

de
si
gn

pr
ob
le
m

N
ew

pr
ef
er
en
ce

or
de
ri
ng

re
la
tio

ns
Pr
op
os
e
al
te
rn
at
iv
e
pr
ef
er
en
ce

re
la
tio

ns
th
at
ar
e
di
ff
er
en
t

fr
om

th
e
Pa
re
to

do
m
in
an
ce
.

1)
Pr
ef
er
en
ce

O
rd
er

R
an
ki
ng
–b
as
ed

al
go
ri
th
m

(d
i
Pi
er
ro

et
al
.2

00
7)

8
1)

W
at
er

di
st
ri
bu
tio
n
pr
ob
le
m

2)
R
an
ki
ng

do
m
in
an
ce
-b
as
ed

al
go
ri
th
m

(K
uk
ko
ne
n
an
d

L
am

pi
ne
n
20
07
)

10
2)

N
ot

fo
un
d

3)
IB
E
A

(Z
itz
le
r
an
d
K
ün
zl
i
20
04
)

5
3)

So
ft
w
ar
e
pr
od
uc
t
lin
e

m
an
ag
em

en
t

4)
H
yp
E
(B
ad
er

an
d
Z
itz
le
r
20
11
)

20
4)

N
ot

fo
un
d

D
ec
om

po
si
tio

n
D
ec
om

po
se

th
e
pr
ob
le
m

in
to

se
ve
ra
l
su
b-
pr
ob
le
m
s
an
d

th
en

so
lv
e
th
es
e
su
b-
pr
ob
le
m
s

si
m
ul
ta
ne
ou
sl
y
by

ex
pl
oi
tin

g
th
e
pa
ra
lle
l
se
ar
ch

ab
ili
ty

of
E
A
s.

1)
M
O
E
A
/D

(Z
ha
ng

an
d
L
i
20
07
)

5
1)

N
ot

fo
un
d

U
se

of
a
pr
ed
ef
in
ed

m
ul
tip

le
ta
rg
et
ed

se
ar
ch

G
ui
de

th
e
po
pu
la
tio

n
du
ri
ng

th
e

op
tim

iz
at
io
n
pr
oc
es
s
ba
se
d
on

m
ul
tip
le
pr
ed
ef
in
ed

ta
rg
et
s

(e
.g
.,
re
fe
re
nc
e
po
in
ts
,

re
fe
re
nc
e
di
re
ct
io
n)

in
th
e

ob
je
ct
iv
e
sp
ac
e.

1)
PI
C
E
A

(W
an
g
et
al
.
20
13
)

10
1)

N
ot

fo
un
d

2)
N
SG

A
-I
II
(D

eb
an
d
Ja
in

20
13
)

15
2)

C
ra
sh
-w

or
th
in
es
s

D
es
ig
n
of

V
eh
ic
le
s

Empir Software Eng

Author Preprint

investigated in the area of SBSE. The following table cites the previous work which its problem
formulation has a number of objectives being equal or higher than five.

Although Search-based refactoring has shown promising results when addressing the
problem of automating design improvement (O’Keeffe and Ó Cinnéide 2008), most of the
current methodologies are still using a limited number of fitness functions, resulting on system
repair from a single objective and it is difficult, in most cases, to extend the set of refactorings
to handle other potential perspectives due to their conflicting nature. Thus, in this work, we
consider the refactoring problem as many-objective optimization problem based on NSGA-III
that will be described in the next section (Table 2).

3 Adapting NSGA-III for the software refactoring problem using quality
attributes

3.1 NSGA-III

NSGA-III is a very recent many-objective algorithm proposed by Deb & Jain (2013). The
basic framework remains similar to the original NSGA-II algorithm with significant changes in
its selection mechanism. Figure 1 gives the pseudo-code of the NSGA-III procedure for a
particular generation t. First, the parent population Pt (of size N) is randomly initialized in the
specified domain, and then the binary tournament selection, crossover and mutation operators
are applied to create an offspring populationQt. Thereafter, both populations are combined and
sorted according to their domination level and the best N members are selected from the
combined population to form the parent population for the next generation. The fundamental
difference between NSGA-II and NSGA-III lies in the way the niche preservation operation is
performed. Unlike NSGA-II, NSGA-III starts with a set of reference points Zr. After non-
dominated sorting, all acceptable front members and the last front Fl that could not be
completely accepted are saved in a set St. Members in St/Fl are selected right away for the
next generation. However, the remaining members are selected from Fl such that a desired
diversity is maintained in the population. Original NSGA-II uses the crowding distance
measure for selecting well-distributed set of points, however, in NSGA-III the supplied
reference points (Zr) are used to select these remaining members as described in Fig. 2. To
accomplish this, objective values and reference points are first normalized so that they have an
identical range. Thereafter, orthogonal distance between a member in St and each of the
reference lines (joining the ideal point and a reference point) is computed. The member is
then associated with the reference point having the smallest orthogonal distance. Next, the
niche count ρ for each reference point, defined as the number of members in St/Fl that are
associated with the reference point, is computed for further processing. The reference point
having the minimum niche count is identified and a member from the last front Fl that is
associated with it is included in the final population. The niche count of the identified reference
point is increased by one and the procedure is repeated to fill up population Pt+1.

It is worth noting that a reference point may have one or more population members associated
with it or need not have any population member associated with it. Let us denote this niche count
as ρj for the j-th reference point. We now devise a new niche-preserving operation as follows.
First, we identify the reference point set Jmin={j: argminj (ρj)} having minimum ρj. In case of
multiple such reference points, one (j* ∈ Jmin) is chosen at random. If ρj*=0 (meaning that there is
no associated Pt+1 member to the reference point j*), two scenarios can occur. First, there exists

Empir Software Eng

Author Preprint
T
ab

le
2

M
an
y-
ob
je
ct
iv
es

ap
pr
oa
ch
es

ap
pl
ie
d
in

so
ft
w
ar
e
en
gi
ne
er
in
g
(M

ka
ou
er

et
al
.2

01
5)

A
ut
ho
r(
s)

Y
ea
r

T
itl
e

A
re
a

A
lg
or
ith

m
(s
)

N
um

be
r
of

ob
je
ct
iv
es

Z
hu
an
g
et
al
.(
20
07
)

20
07

So
lv
in
g
M
ul
ti-
ob
je
ct
iv
e
an
d
Fu

zz
y
M
ul
ti-

at
tr
ib
ut
iv
e
In
te
gr
at
ed

Te
ch
ni
qu
e
fo
r
Q
oS

A
w
ar
e
W
eb

Se
rv
ic
e
Se
le
ct
io
n

D
es
ig
n
E
ng
in
ee
ri
ng

M
O
G
A

5

W
ad
a
et
al
.(
20
08
)

20
08

M
ul
tio

bj
ec
tiv
e
O
pt
im

iz
at
io
n
of

SL
A
-

A
w
ar
e
Se
rv
ic
e
C
om

po
si
tio
n

D
es
ig
n
E
ng
in
ee
ri
ng

E
3
-M

O
G
A

10

B
ow

m
an

et
al
.(
20
10
)

20
10

So
lv
in
g
th
e
C
la
ss

R
es
po
ns
ib
ili
ty

A
ss
ig
nm

en
t

Pr
ob
le
m

in
O
bj
ec
t-
O
ri
en
te
d
A
na
ly
si
s
w
ith

M
ul
ti-
O
bj
ec
tiv
e
G
en
et
ic
A
lg
or
ith

m
s

D
es
ig
n
E
ng
in
ee
ri
ng

SP
E
A
2

5

K
re
m
m
el
et
al
.(
20
11
)

20
11

So
ft
w
ar
e
Pr
oj
ec
t
Po

rt
fo
lio

O
pt
im

iz
at
io
n

w
ith

A
dv
an
ce
d
M
ul
tio

bj
ec
tiv
e

E
vo
lu
tio

na
ry

A
lg
or
ith

m
s

M
an
ag
em

en
t
E
ng
in
ee
ri
ng

m
PO

E
M
S,

5

R
od
ri
gu
ez

et
al
.(
20
11
)

20
11

M
ul
tio

bj
ec
tiv
e
Si
m
ul
at
io
n
O
pt
im

is
at
io
n

in
S
of
tw
ar
e
Pr
oj
ec
t
M
an
ag
em

en
t

M
an
ag
em

en
t
E
ng
in
ee
ri
ng

N
SG

A
-I
I

5

Pr
ad
itw

on
g
et
al
.(
20
10
)

20
11

So
ft
w
ar
e
M
od
ul
e
C
lu
st
er
in
g
as

a
M
ul
ti-

O
bj
ec
tiv

e
Se
ar
ch

Pr
ob
le
m

D
es
ig
n
E
ng
in
ee
ri
ng

Tw
o-
A
rc
hi
ve

G
A

5

B
ar
ro
s
(2
01
2)

20
12

A
n
A
na
ly
si
s
of

th
e
E
ff
ec
ts
of

C
om

po
si
te

O
bj
ec
tiv
es

in
M
ul
tio

bj
ec
tiv

e
So

ft
w
ar
e

M
od
ul
e
C
lu
st
er
in
g

D
es
ig
n
E
ng
in
ee
ri
ng

N
SG

A
-I
I

5

C
ol
an
zi
&

V
er
gi
lio

(2
01
2)

20
12

A
pp
ly
in
g
Se
ar
ch

B
as
ed

O
pt
im

iz
at
io
n
to

SP
L
A
rc
hi
te
ct
ur
es
:
L
es
so
ns

L
ea
rn
ed

D
es
ig
n
E
ng
in
ee
ri
ng

N
SG

A
-I
I

5

Sa
rr
o
et
al
.(
20
12
)

20
12

Si
ng
le
an
d
M
ul
ti
O
bj
ec
tiv

e
G
P
fo
r

So
ft
w
ar
e
D
ev
el
op
m
en
t

E
ff
or
t
E
st
im

at
io
n

M
an
ag
em

en
t
en
gi
ne
er
in
g

M
O
G
P

5

Sa
yy
ad

et
al
.(
20
13
a)

20
13

O
n
th
e
V
al
ue

of
U
se
r
Pr
ef
er
en
ce
s

in
Se
ar
ch
-B
as
ed

So
ft
w
ar
e

E
ng
in
ee
ri
ng
:
A

C
as
e
St
ud
y
in

So
ft
w
ar
e
Pr
od
uc
t
L
in
es

R
eq
ui
re
m
en
ts
E
ng
in
ee
ri
ng

IB
E
A

U
p
to

5

Sa
yy
ad

et
al
.(
20
13
b)

20
13

Sc
al
ab
le
Pr
od
uc
t
L
in
e
C
on
fi
gu
ra
tio

n:
A

St
ra
w

to
B
re
ak

th
e
C
am

el
’s
B
ac
k

R
eq
ui
re
m
en
ts
E
ng
in
ee
ri
ng

IB
E
A

5

Empir Software Eng

Author Preprint
T
ab

le
2

(c
on
tin

ue
d)

A
ut
ho
r(
s)

Y
ea
r

T
itl
e

A
re
a

A
lg
or
ith

m
(s
)

N
um

be
r
of

ob
je
ct
iv
es

Y
ao

(2
01
3)

20
13

So
m
e
R
ec
en
t
W
or
k
on

M
ul
ti-
ob
je
ct
iv
e

A
pp
ro
ac
he
s
to

Se
ar
ch
-B
as
ed

So
ft
w
ar
e

E
ng
in
ee
ri
ng
.

D
es
ig
n
E
ng
in
ee
ri
ng

Tw
o-
A
rc
hi
ve

A
lg
or
ith
m

5

R
am

ír
ez

et
al
.(
20
14
)

20
14

O
n
th
e
Pe
rf
or
m
an
ce

of
M
ul
tip
le
O
bj
ec
tiv

e
E
vo
lu
tio

na
ry

A
lg
or
ith

m
s
fo
r
So

ft
w
ar
e

A
rc
hi
te
ct
ur
e
D
is
co
ve
ry

D
es
ig
n
E
ng
in
ee
ri
ng

SP
E
A
2,

N
SG

A
-I
I,
ε-

M
O
E
A
,M

O
E
A
/D
,G

rE
A

6

M
ka
ou
er

et
al
.(
20
13
)

20
14

H
ig
h
D
im

en
si
on
al
S
ea
rc
h-
ba
se
d
S
of
tw
ar
e

E
ng
in
ee
ri
ng
:
Fi
nd
in
g
T
ra
de
of
fs
am

on
g

15
O
bj
ec
tiv

es
fo
r
A
ut
om

at
in
g
So

ft
w
ar
e

R
ef
ac
to
ri
ng

U
si
ng

N
SG

A
-I
II

M
ai
nt
en
an
ce

E
ng
in
ee
ri
ng

N
SG

A
-I
II

15

K
al
bo
us
si
et
al
.(
20
13
)

20
14

Pr
ef
er
en
ce
-B
as
ed

M
an
y-
O
bj
ec
tiv

e
E
vo
lu
tio

na
ry

Te
st
in
g
G
en
er
at
es

H
ar
de
r

Te
st
C
as
es

fo
r
A
ut
on
om

ou
s
A
ge
nt
s

Te
st
in
g
E
ng
in
ee
ri
ng

P-
M
O
E
T

7

O
la
ec
he
a
et
al
.(
20
14
)

20
14

C
om

pa
ri
so
n
of

E
xa
ct
an
d
A
pp
ro
xi
m
at
e

M
ul
ti-
O
bj
ec
tiv

e
O
pt
im

iz
at
io
n
fo
r
So

ft
w
ar
e

Pr
od
uc
t
L
in
es

R
eq
ui
re
m
en
ts
E
ng
in
ee
ri
ng

G
IA

,I
B
E
A

U
p
to

7

M
ka
ou
er

et
al
.(
20
15
)

20
15

M
an
y-
O
bj
ec
tiv

e
So

ft
w
ar
e
R
em

od
ul
ar
iz
at
io
n

U
si
ng

N
SG

A
-I
II

M
ai
nt
en
an
ce

E
ng
in
ee
ri
ng

N
SG

A
-I
II

8

Empir Software Eng

Author Preprint

one or more members in front Fl that are already associated with the reference point j*. In this
case, the one having the shortest perpendicular distance from the reference line is added to Pt+1.
The count ρj* is then incremented by one. Second, the front Fl does not have any member
associated with the reference point j*. In this case, the reference point is excluded from further
consideration for the current generation. In the event of ρj*≥1 (meaning that already one member
associated with the reference point exists), a randomly chosenmember, if exists, from front Fl that
is associated with the reference point Fl is added to Pt+1. If such a member exists, the count ρj* is
incremented by one. After ρj counts are updated, the procedure is repeated for a total ofK times to
increase the population size of Pt+1 to N.

3.2 Problem formulation

The refactoring problem involves searching for the best refactoring solution among the set of
candidate ones, which constitutes a huge search space. A refactoring solution is a sequence of

Fig. 1 Pseudo-algorithm of NSGA-III

Empir Software Eng

Author Preprint

refactoring operationswhere the goal of applying the sequence to a software system S is typically to
fix maintenance issues in S. Usually in SBSE approaches, we use two or three metrics as objective
functions for a particular multi-objective heuristic algorithm to find these design issues and correct
them. In reality, we assume that increasing the number of metrics to optimize may increase the
quality of the refactored code. However, the high number of suggested solutions in a 16-objective
Pareto-Front quickly exceeds the developer’s ability to manually choose between them. It has been
known that developers most likely want a unique optimal solution that better satisfies his/her
preferences that can be easily expressed in terms of quality objectives. Motivated by this observa-
tion, we propose in this research work to consider the six objectives of the QMOODmodel where
each represents a separate objective function along with two other objectives to reduce the number
of refactorings to apply andmaximize the design coherence after refactoring. In this way, we obtain
a many-objective (8-objective) formulation of the refactoring problem that could not be solved
using standard multi-objective approaches. This formulation is given as follows:

Maximize F x; Sð Þ ¼ f 1 x; Sð Þ; f 2 x; Sð Þ;…; f 8 x; Sð Þ½ �
subject to x ¼ x1;…; xnð Þ∈X

where X is the set of all legal refactoring sequences starting from S, xi is the ith refactoring
operation, and fk(x,S) is the k

th objective.
The refactoring operations studied in this extension are described in Table 3.
The concern about using these operations is whether each one of them have a positive

impact on the refactored code quality. In this context, previous work has studied the impact

Fig. 2 Normalized reference plane for a three-objective case (Deb and Jain 2013)

Empir Software Eng

Author Preprint

analysis of refactoring operations on internal and external quality metrics. Du Bois & Mens
(2003) proposed the evaluation of a selected set of refactorings based on their impact on the
internal CK quality metrics. They extended their work by including more studied operations
while enhancing cohesion and coupling measures (Du Bois et al. 2004). They provided
guidelines to distinguish between operations that optimize software quality and ruled out those
which their application will increase coupling or decrease cohesion. Similarly, Alshayeb
(Alshayeb 2009) has quantitatively assessed, using internal metrics, the effect of refactorings
on different quality attributes to help developers in the estimation of refactoring effort in terms
of the cost and time.

In the following, we will describe in details the different objectives considered in our
formulation.

3.2.1 QMOOD model quality attributes as objectives

Many studies has been utilizing structural metrics as basis of defining quality indicators for a
good system design (Chidamber and Kemerer 1994; Abreu 1995; Lorenz and Kidd 1994). As
an illustrative example, Bansiya & Davis (2002) proposed a set of quality measures, using the
ISO 9126 specification, called QMOOD. Each of these quality metrics is defined using a
combination of high-level metrics detailed in Table 4.

Refactoring operations change the internal design of the system, and eventually the high
level metrics values will change accordingly. To have a better understanding of the refactorings
impact, external quality factors have been defined using the high level metrics. They provide

Table 3 Refactoring types and
their involved actors and roles Refactorings Actors Roles

Extract class class source class, new class

field moved fields

method moved methods

Extract interface class source classes, new interface

field moved fields

method moved methods

Inline class class source class, target class

Move field class source class, target class

field moved field

Move method class source class, target class

method moved method

Push down field class super class, sub classes

field moved field

Push down method class super class, sub classes

method moved method

Pull up field class sub classes, super class

field moved field

Pull up method class sub classes, super class

method moved method

Move class package source package, target package

class moved class

Empir Software Eng

Author Preprint

meaningful measures to the system enhancement. These external quality factors are enumer-
ated in the following Table 5.

The adaptation of the QMOOD model in the problem formularization has provided six
quality attributes as separate objectives: reusability, flexibility, understandability, functionality,
extendibility and effectiveness.

3.2.2 Number of code changes as an objective

It is known that multiple refactoring sequences may have a completely different set of
operations which their execution will give two different resulting designs but they might have
the same quality. So, the execution of a specific suggested refactoring sequence may require an
effort that is comparable to the one of re-implementing part of the system from scratch. Taking
this observation into account, it is trivial to minimize the number of suggested operations in the
refactoring solution since the designer can have some preferences regarding the percentage of
deviation with the initial program design. In addition, most developers prefer solutions that
minimize the number of changes applied to their design (Kessentini et al. 2011). Thus, we
formally defined the fitness function as the number of refactoring operations (size of the
solution) to be minimized:f7(x)=Size(x) where x is the solution to evaluate.

The different code changes (refactoring types) used in our approach may have different
impacts on the maintainability/quality objectives considered in our formulation. We show in

Table 4 QMOOD metrics description (Bansiya and Davis 2002)

Design Metric Design
Property

Description

Design Size in Classes (DSC) Design Size Total number of classes in the design.

Number Of Hierarchies (NOH) Hierarchies Total number of ‘root’ classes in the design
(count(MaxInheritenceTree(class)=0))

Average Number of Ancestors (ANA) Abstraction Average number of classes in the inheritance
tree for each class.

Direct Access Metric (DAM) Encapsulation Ratio of the number of private and protected
attributes to the total number of attributes
in a class.

Direct Class Coupling (DCC) Coupling Number of other classes a class relates to,
either through a shared attribute or a
parameter in a method.

Cohesion Among Methods of class
(CAMC)

Cohesion Measure of how related methods are in a class
in terms of used parameters. It can also be
computed by: 1 – LackOfCohesionOfMethods()

Measure Of Aggregation (MOA) Composition Count of number of attributes whose type is
user defined class(es).

Measure of Functional Abstraction (MFA) Inheritance Ratio of the number of inherited methods per
the total number of methods within a class.

Number of Polymorphic Methods (NOP) Polymorphism Any method that can be used by a class and
its descendants. Counts of the number of
methods in a class excluding private, static
and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class

Number of Methods (NOM) Complexity Number of methods declared in a class.

Empir Software Eng

Author Preprint

the following that the different quality objectives are conflicting since the different refactoring
types considered in our approach may decrease some quality attributes and increase some
others. In Shatnawi & Li (2011), the impact analysis of some of Fowler’s catalog operations on
some external quality factors (effectiveness, flexibility, extendibility and reusability) has
shown that not all refactorings necessarily improve these quality factors. Rules of thumb have
been established using heuristics to dictate which refactorings to use in order to enhance a
given quality attribute. The following table has been extracted from (Shatnawi and Li 2011) to
show the impact analysis of the refactorings applied on restructuring EclipseIU 2.1.3 and
Struts (1.1 and 1.2.4).

Based on Table 6, the operations have various implications on the internal metrics that can
reach the degree of conflict. The composition of these metrics values can be an indicator of

Table 5 Quality attributes and their computation equations (Bansiya and Davis 2002).

Quality attribute Definition

Computation

Reusability A design with low coupling and high cohesion is easily reused by other designs.

-0.25*Coupling+0.25*Cohesion+0.5*Messaging+0.5*Design Size

Flexibility The degree of allowance of changes in the design.

0.25*Encapsulation-0.25*Coupling+0.5*Composition+0.5*Polymorphism

Understandability The degree of understanding and the easiness of learning the design
implementation details.

0.33*Abstraction+0.33*Encapsulation-0.33*Coupling+0.33*Cohesion-
0.33*Polymorphism-0.33*Complexity-0.33*Design Size

Functionality Classes with given functions that are publically stated in interfaces to be used
by others.

0.12*Cohesion+0.22*Polymorphism+0.22*Messaging+0.22*DesignSize+
0.22*Hierarchies

Extendibility Measurement of design’s allowance to incorporate new functional requirements.

0.5*Abstraction-0.5*Coupling+0.5*Inheritance+0.5*Polymorphism

Effectiveness Design efficiency in fulfilling the required functionality.

0.2*Abstarction+0.2*Encapsulation+0.2*Composition+0.2*Inheritance+
0.2*Polymorphism

Table 6 Refactorings impact analysis on QMOOD internal metrics.

Refactoring Operation DSC NOH ANA DAM DCC CAMC MOA MFA NOP CIS NOM

Extract class + 0 0 0 + + + 0 0 0 0

Extract interface + 0 + 0 0 0 0 + + 0 0

Inline class - 0 0 0 - − − 0 0 0 0

Move field 0 0 0 0 0 + 0 0 0 0 0

Move method 0 0 0 0 − + 0 0 0 − 0

Push down field 0 0 0 0 0 + 0 0 0 0 0

Push down method 0 0 0 0 + 0 0 + + + 0

Pull up field 0 0 0 0 0 − 0 0 0 0 0

Pull up method 0 0 0 0 − 0 0 − − − 0

Empir Software Eng

Author Preprint

how the external quality attributes will be affected. Table 7 shows the resulting impact analysis
on QMOOD quality attributes and the potential conflict between them.

Although the statistical significance of the reported results in Table 7 was not studied in this
work and kept as part of our future investigations, it does not affect our problem formulation,
in fact, if the degree of conflict between two objectives is not considerable for a random set of
refactorings, this degrades the heuristics’ performance by increasing the computational time of
the heuristics but it does not affect the quality of the results.

In general, the related work has given the following observations: (1) Not all refactoring
operations have a desired impact on internal and external quality attributes. (2) It is difficult to
theoretically come up with an optimal set of corrections to increase a chosen quality attribute
without decreasing another. (3) A goal-oriented process has been given to include or/and
exclude refactorings based on developer’s preferred quality attribute.

These limitationsmotivated our formulation that (1) is not limited to a specific types of refactorings
and that (2) is not limited to optimizing a preferred quality attribute with disregard to the others.

3.2.3 Design coherence preservation as an objective

It is usually the designer’s responsibility to manually inspect the feasibility of the suggested
refactorings and evaluate their meaningfulness from the design coherence perspective.
Sometimes, the new refactored design may be structurally improved but introduce several design
incoherence. To preserve the semantics design, we present two main formulated different measures
in which we describe the following sections. The fitness function is formulated as an average of the
two following measures.

A. Vocabulary-based similarity (VS)

This kind of similarity should be eventually considered when moving methods, or attributes
between classes. For instance, when moving a method or an attribute from one source class to
another destination class, this operation would make sense if both source and target classes have
similar vocabularies. In this case, it is assumed that the vocabulary of naming the code elements in
classes is reflecting a specific domain terminology. That’s why, two code elements could be
semantically similar if they use similar vocabularies (Ouni et al. 2012a, b; Dean et al. 1995; Kim
et al. 2010).

Table 7 Refactorings impact analysis on QMOOD quality attributes

Refactoring
Operation

Reusability Flexibility Understandability Functionality Extendibility Effectiveness

Extract class + + − + − +

Extract interface + + − + + +

Inline class − − + − + −
Move field + 0 + + 0 0

Move method 0 + + − + 0

Push down field + 0 + + 0 0

Push down method + + − + + +

Pull up field − 0 − − 0 0

Pull up method − − + − − −

Empir Software Eng

Author Preprint

A token-based extraction (Corazza et al. 2012) of vocabulary is performed on the naming of
classes, methods, attributes, parameters and comments. This Tokenization process is widely
used in code clones detection techniques and it is known to be more robust to code changes
compared to text-based approaches. The semantic similarity is calculated based on information
retrieval-based techniques (e.g., cosine similarity). The following equation calculates the
cosine similarity between two classes. Each actor is represented as an n dimensional vector,
where each dimension corresponds to a vocabulary term. The cosine of the angle between two
vectors is considered as an indicator of similarity. Using cosine similarity, the conceptual
similarity between two classes, c1 and c2, is determined as follows:

Sim c1; c2ð Þ ¼ cos c 1
!
; c 2
!� �

¼ c 1
!
:c 2
!

c 1
!������*������c 2!��� ������ ��� ¼

Xn

i¼1

wi; 1*wi; 2ð Þ
ffiXn

i¼1

wi; 1ð Þ2
vuut

ffiXn

i¼1

wi; 2ð Þ2
vuut

∈ 0; 1½ � ð2Þ

where c 1
!¼ w1;1;…;wn;1

� �
and c 2

!¼ w1;2;…;wn;2

� �
are respectively two vectors

corresponding to c1 and c2 The weights wi,j are automatically generated by information
retrieval-based techniques such as the Term Frequency – Inverse Term Frequency (TF-IDF)
method. We used a method similar to that described in (Corazza et al. 2012) to determine the
vocabulary and represent the classes as term vectors.

B. Dependency-based similarity (DS)

Similarly to vocabulary similarity, the semantic closeness can be also extracted from mutual
dependencies. In general, a high coupling (i.e., multiple call in and call out) between two
classes is usually not recommended, and if it exists, developers are usually prompted to merge
them to reduce the design complexity, this also hints that these two classes are semantically
close. Intuitively, the application of refactoring on highly dependent classes is not only
beneficial to the design quality, but also has a higher probability to eventually be meaningful.
To follow up with dependency, we point out two types of dependency links:

1) Shared Method Calls (SMC) that can be easily detected through the application call
graphs using the Class Hierarchy Analysis (CHA) (Dean et al. 1995). Methods are
modeled as graphs while calls represent the edges between nodes. A call graph can either
be a call in or call out. This technique is applied for each couple of classes, shared calls are
being detected through the graph by identifying shared neighbors of nodes related to each
actor. Shared call-in and shared call-out are distinguished and separately calculated for a
given couple c1 and c2 (i.e., two classes) using the following equations.

sharedCallOut c1; c2ð Þ ¼ callOut c1ð Þ ∩ callOut c2ð Þj j
callOut c1ð Þ ∪ callOut c2ð Þj j ∈ 0; 1½ � ð3Þ

sharedCallIn c1; c2ð Þ ¼ callIn c1ð Þ ∩ callIn c2ð Þj j
callIn c1ð Þ ∪ callIn c2ð Þj j ∈ 0; 1½ � ð4Þ

2) Shared field access (SFA) is also known as data coupling and occurs when a class refers to
another as a type, or shares a method that references another class as a parameter type.

Empir Software Eng

Author Preprint

Static analysis is adopted to view occurrences of possible invocation of calls of field
accesses through methods or constructors. Two classes have a high shared field access rate
if they read or modify the same fields belonging to one or both of them. This violation of
the principle of modularity can be, for example, fixed by either merging these two classes.
In this context, the rate of shared field access is used as an indicator to semantic closeness
between two classes c1 and c2, and it is calculated according to the following equation.

sharedFieldsRW c1; c2ð Þ ¼ fieldRW c1ð Þ ∩ fieldRW c2ð Þj j
fieldRW c1ð Þ ∪ fieldRW c2ð Þj j ∈ 0; 1½ � ð5Þ

where fieldRW(ci) refers to the number of fields that may be read or write by each method
of the module ci.

To illustrate the dependency similarity measure, let us take the example of two classes A
and B with no direct calls between them, if a third class C calls both of them, then the callIn(A)
inter callIn(B) will be incremented, the intersection between callIns determines the number of
classes that both call these two classes. It is divided by the overall number of callIns received
by these two classes. Similarly for the callsOut which informs about the number of common
entities called by two given classes. For the shared field access, the idea is similar, even if
sharing attributes is a bad practice indeed, if it exists, then it creates a dependency between the
class sharing the attribute and the other classes accessing it, we use this as an indicator of
semantic closeness between them.

3.3 Solution approach

3.3.1 Solution representation

As defined in the previous section, a solution consists of a sequence of n refactoring operations
applied to different code elements in the source code to fix. In order to represent a candidate
solution (individual/chromosome), we use a vector-based representation. Each vector’s dimen-
sion represents a refactoring operation where the order of applying these refactoring operations
corresponds to their positions in the vector. For each of these refactoring operations, we specify
pre- and post-conditions in the style of Fowler et al. (1999) to ensure the feasibility of their
application. The initial population is generated by assigning randomly a sequence of
refactorings to some code fragments. To apply a refactoring operation we need to specify
which classes, i.e., code fragments, are involved/impacted by this refactoring and which roles
they play in performing the refactoring operation. An actor can be a package, class, field or
method. The list of refactoring operations along with their appropriate actors is listed in Table.

3.3.2 Solution variation

In each search algorithm, the variation operators play the key role of moving within the search
space with the aim of driving the search towards optimal solutions. For crossover, we use the
one-point crossover operator. It starts by selecting and splitting at random two parent solutions.
Then, this operator creates two child solutions by putting, for the first child, the first part of the
first parent with the second part of the second parent, and vice versa for the second child. This
operator must ensure the respect of the length limits (size of the solution is limited to up-to 500
refactorings in our experiments) by eliminating randomly some refactoring operations. It is

Empir Software Eng

Author Preprint

important to note that in many-objective optimization, it is better to create children that are
close to their parents in order have a more efficient search process (Deb and Jain 2013). For
this reason, we control the cutting point of the one-point crossover operator by restricting its
position to be either belonging to the first tier of the refactoring sequence or belonging to the
last tier. For mutation, we use the bit-string mutation operator that picks probabilistically one
or more refactoring operations from its or their associated sequence and replaces them by other
ones from the initial list of possible refactorings.

3.3.3 Solution evaluation

Each generated refactoring solution is executed on the system S. Once all required data is
computed, the solution is evaluated based on the quality of the resulting design (the six quality
attribute objectives to be maximized), along with the aggregation of semantics similarity
functions (to be maximized) followed by the complexity of the refactoring operations (to be
minimized). These values are the coordinates of the solution in the objectives space and so, it is
assigned a non-domination rank as well as a particular reference point which is the closest to
the solution.

3.3.4 Normalization of population members

Duo to the heterogeneous nature of objective functions (i.e., they have different ranges of
values), we used the normalization procedure proposed by Deb & Jain (2013) to circumvent
this problem. At each generation, the minimal and maximal values for each metric are recorded
and then used by the normalization procedure to calculate respectively the Nadir and ideal
points (Bechikh et al. 2010). Normalization allows the population members and the reference
points to have the same range, which is a pre-requisite for diversity preservation.

3.3.5 Final solution selection

Once the final Pareto front has been generated, for each fitness function, the reference sets are
calculated from the union of all Pareto approximations which are being normalized with respect
to ideal and Nadir points. The choice of one individual among the large set of Pareto-optimal
solutions is not trivial. The preference of the developer can be then used to determine which of the
solution may better satisfy his/her needs. Since the objectives have been defined, in terms of
quality attributes, along with minimizing the size and maximizing the semantic coherence, it is
easier for the developer to specify a ranking that can be used as input to the hyperplane and
consider only reference points that match (or closest to) the rank. This will reduce drastically the
number of preferred reference points. Still, if few solutions satisfy such condition, the niche point
selection will sort them and send the top of the queue as output. In case of absence of developer’s
input, we choose the nearest solution to the Knee point (Bechikh et al. 2011) (i.e., the vector
composed of the best objective values among the population members in all iterations).

4 Design of the empirical study

The goal of the study is to evaluate the usefulness our many-objective refactoring tool in
practice. We conducted experiments on popular open source systems and one industrial project

Empir Software Eng

Author Preprint

using the Goal, Question, Metrics (GQM) assessment approach (Basili 1992). This Section is
organized as follows. Section 4.1 poses three research questions that drive our experiments
whose settings have been detailed in Section 4.2: Section 4.2.1 presents the selected software
systems. Section 4.2.2 indicates the tuning of the various heuristics used. Section 4.2.3
describes the statistical tests details. Finally, Section 4.2.4 and 4.2.5 are dedicated to subjects
and scenarios that constitute the non-subjective evaluation conducted with potential developers
who can use our tool.

4.1 Research questions

In our study, we assess the performance of our refactoring approach by finding out whether it
could generate meaningful sequences of operations that improve the quality of the systems
while reducing the number of code changes and preserving the semantic coherence of the
design. Our study aims at addressing the following research questions outlined below. We also
explain how our experiments are designed to address these questions. The main question to
answer is to what extent the proposed approach can propose meaningful refactoring solutions
that can help developers to improve the quality of their systems. To find an answer, we defined
the following three research questions:

RQ1: To what extent can the proposed approach improve the quality of the evaluated
systems?
RQ2: How does the proposed many-objective approach based on NSGA-III perform
compared to other many/multi-objective algorithms or a mono-objective approach for
software refactoring and to an existing approach that is not based on heuristic search?
RQ3: How our many-objective refactoring approach can be useful for software engineers
in real-world setting?

One of the challenges in SBSE is to find the most suitable search algorithm for a specific
software engineering problem. The only proof is the experimental results, thus it is important to
address this question when designing a new software engineering problem as an optimization
problem. In addition, a comparison with a mono-objective algorithmmay justify the need to use a
many-objective approach to show that the different objectives are really conflicting and cannot be
merged into one fitness function. It is maybe also not sufficient to show that the proposed many-
objective formulation outperforms others search algorithms, thus it is important to compare with a
non-search-based approach to confirm the practical value of the proposed search-based approach.

To answer RQ1, we validate the proposed refactoring technique on seven open-source
systems and one industrial project to evaluate the quality improvements of systems after applying
the suggested refactoring solution. We calculate the overallQuality Gain (QG) for the six quality
attributes as follows: Let Q={q1, q2,… q6} and Q′={q′1, q′2,… q′6} be respectively the set of
quality attribute values before and after applying the suggested refactorings, and {w1, w2,…w6}
the weights assigned to each of these quality factors. Then the QG is calculated by:

QG ¼
X6

i¼1

wi* q0i−qið Þ ð6Þ

In addition, we validate the proposed refactoring operations to fix code smells by calculating
the Defect Correction Ratio (DCR) which is given by the following equation and corresponds

Empir Software Eng

Author Preprint

to the ratio of the number of corrected design defects to the initial number of detected defects
before applying the suggested refactoring solution. The code smells were collected using
existing detection tools DÉCOR (Moha et al. 2009) and InCode (Marinescu et al. 2010).

DCR ¼

���Corrected Defects Instances���
All Defects Instancesj j ∈ 0; 1½ � ð7Þ

Since it is important to validate the proposed refactoring solutions from both quantitative
and qualitative perspectives, we use two different validation methods: manual validation and
automatic validation of the efficiency of the proposed solutions. For the manual validation, we
asked groups of potential users (software engineers) of our refactoring tool to evaluate,
manually, whether the suggested operations are feasible, make sense semantically. We define
the metric Manual Precision (MP) which corresponds to the number of semantically coherent
operations over the total number of suggested operations. MP is given by the following
equation

MP ¼

���Coherent Operations���
Suggested Operationsj j ∈ 0; 1½ � ð8Þ

For the automatic validation we compared the proposed refactorings with the expected ones
using the different systems in terms of recall and precision. The expected refactorings are those
applied by the software development team to the next software release. To collect these
expected refactorings, we use Ref-Finder (Kim et al. 2010), an Eclipse plug-in designed to
detect refactorings between two program versions. Ref-Finder allows us to detect the list of
refactorings applied to the current version of a system (see Table 10):

RErecall ¼

���suggested operations��� ∩ ���expected operations������expected operations��� ∈ 0; 1½ � ð9Þ

PRprecesion ¼

���suggested operations��� ∩ ���expected operations������suggested operations��� ∈ 0; 1½ � ð10Þ

To answer RQ2, we compared the performance of NSGA-III based approach with four
many-objective techniques, Gr-EA (Yang et al. 2013), DBEA-Eps (Asafuddoula et al. 2013),
IBEA (Zitzler and Künzli 2004) and MOEA/D (Zhang and Li 2007), an existing work based
on a multi-objective NSGA-II algorithm (Ouni et al. 2012a) and also a mono-objective
evolutionary algorithm (Kessentini et al. 2011). The approaches are briefly introduced as
follows:

Grid-based Evolutionary Algorithm (Gr-EA) partitions the search space into grids (also
called hypercubes). The number of divisions in Gr-EA is a parameter. Then, it recombines
them based on the current objective values in the population. Just like in dominance-based
algorithms, it also ranks the population by fronts but the crowding distance and the spread of
solutions are calculated from grid-based metrics.

Decomposition Based Evolutionary Algorithm with Epsilon Sampling (DBEA-Eps) is
another decomposition-based EA with a variation in the decomposition method which

Empir Software Eng

Author Preprint

generates reference points via systematic sampling and deals with constraint by an adaptive
epsilon scheme to manage balance between convergence and diversity.

Indicator-Based Evolutionary Algorithm (IBEA) is distinguished among other EAs by its
continuous dominance criteria where each solution is assigned a weight that is calculated from
quality indicators, usually given by the user.

Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) simulta-
neously performs an optimization of previously decomposed sub-problems, according to their
neighborhood information. MOEA/D assigns a weight vector to every individual in the
population, each one being focused on the resolution of the sub-problem represented by its
weight vector. The solutions evaluation is done by the Tchebycheff approach and by comput-
ing their distance to a reference point.

The comparison between these many-objective algorithms is performed in terms of con-
vergence of the Pareto Front and with respect to the diversity of the obtained solutions. In order
to estimate the convergence and diversity, we used the Inverted Generational Distance (IGD),
which is the sum of distances from each point of the true Pareto front to the nearest point of the
non-dominated set found by the algorithm in all iterations, the lower the IGD value, the better
the approximation is. Since both indicators measure the convergence and spread of the
obtained set of solutions, we will only use the IGD as performance indicator and it will be
statistically analyzed to assess the significance of results.

As part of our experiments, to demonstrate the importance of taking each quality attribute as
separate objective instead of simply aggregating them into a single fitness function, a com-
parison with a mono-objective approach that aggregates several quality attributes in one
objective is required. The comparison between a many-objective algorithms with a mono-
objective one is not straightforward. The first one returns a set of non-dominated solutions
while the second one returns a single optimal solution. In order to cope with this situation, for
each many-objective algorithm the nearest solution to the Knee point is selected as a candidate
solution to be compared with the single solution return by the mono-objective algorithm. We
compared NSGA-III with an existing mono-objective refactoring approach (Kessentini et al.
2011) based on the use of QMOOD quality attributes aggregated in one fitness function.

We compared our proposal to the popular design defects detection and correction tool
JDeodorant (Tsantalis et al. 2008) that does not use heuristic search techniques. The current
version of JDeodorant is implemented as an Eclipse plug-in that identifies some types of
design defects using quality metrics and then proposes a list of refactoring strategies to fix
them.

For RQ3, we evaluated the benefits of our refactoring tool by several software engineers.
To this end, they classify the suggested refactorings (IR) one by one as interesting or not. The
difference with the MP metric is that the operations are not classified from a semantic
coherence perspective but form a usefulness one.

IR ¼

���Useful Operations���
Suggested Operationsj j ∈ 0; 1½ �

To answer the above research questions, we selected the solution from the set of non-
dominated ones providing the maximum trade-off using the following strategy when compar-
ing between the different algorithms (expect the mono-objective algorithm where we select the
solution with the highest fitness function). In order to find the maximal trade-off solution of the
multi-objective or many-objective algorithm, we use the trade-off worthiness metric proposed

Empir Software Eng

Author Preprint

by Rachmawati and Srinivasan (2009) to evaluate the worthiness of each non-dominated
solution in terms of compromise between the objectives. This metric is expressed as follows:

where

T xi; x j
� � ¼

XM
m¼1

max 0;
f m x j

� �
− f m xið Þ

f max
m − f min

m

" #

XM
m¼1

max 0;
f m xið Þ− f m x j

� �
f max
m − f min

m

" #

We note that xj denotes members of the set of non-dominated solutions S that are non-
dominated with respect to xi. The quantity μ(xi,S) expresses the least amount of improvement
per unit deterioration by substituting any alternative xj from S with xi. We note also that fm(xi)
corresponds to themth objective value of solution xi and fm

max/fm
min corresponds to the maximal/

minimal value of the mth objective in the population individuals. In the above equations,
normalization is performed in order to prevent some objectives being predominant over others
since objectives are usually incommensurable in real world applications. In the last equation,
the numerator expresses the aggregated improvement gained by substituting xj with xi.
However, the denominator evaluates the deterioration generated by the substitution (Table 8).

4.2 Experimental setting

4.2.1 Software systems

We used a set of well-known open-source java projects that have been investigated in our
previous work (Mkaouer et al. 2013) and one project from our industrial partner Ford Motor
Company. We applied our approach to the following open-source java projects: ArgoUML
v0.26, Xerces v2.7, ArgoUML v0.3, Ant-Apache v1.5, Ant-Apache v1.7.0, Gantt v1.10.2 and

Table 8 Summary of the empirical study design

Research questions Metrics and measurements

Quality improvement of refactored systems? Total Quality Gain (QG) (Fig. 3)

Defect Correction Ratio (DCR) (Fig. 4)

Manual Precision (MP), Precision (PR) and
Recall (RE) (Fig. 5)

NSGA-III performance compared to other
mono/many/multi-objective algorithms
and a non-search-based approach?

The Inverted Generational Distance (IGD) (Fig. 6)

Computational Time (CT) (Fig. 7)

Total Quality Gain (QG) (Fig. 8)

Manual Precision (MP), Precision (PR)
and Recall (RE) (Fig. 9)

Average Number of Suggested Refactorings (Fig. 10)

Usefulness of the refactoring approach in
real-world setting?

Useful Refactorings (IR) (Fig. 11)

Empir Software Eng

Author Preprint

Azureus v2.3.0.6. Xerces-J is a family of software packages for parsing XML. ArgoUML is a
Java open source UML tool that provides cognitive support for object-oriented design. Apache
Ant is a build tool and library specifically conceived for Java applications. GanttProject is a
cross-platform tool for project scheduling. Azureus is a Java BitTorrent client for handling
multiple torrents. We also considered in our experiments an industrial project, JDI, provided by
our industrial partner the FordMotor Company. It is Java-based software system that helps Ford
Motor Company analyze useful information from the past sales of dealerships data and suggests
which vehicles to order for their dealer inventories in the future. This system is main key
software application used by Ford Motor Company to improve their vehicles sales by selecting
the right vehicle configuration to the expectations of customers. JDI is a highly structured and
several versions were proposed by software engineers at Ford during the past 10 years. Due to
the importance of the application and the high number of updates performed during a period of
10 years, it is critical to ensure good refactoring solutions of JDI to reduce the time required by
developers to introduce new features in the future and understand existing implementations.

We selected these systems for our validation because they range from medium to large-sized
open-source projects, which have been actively developed over the past 10 years and because
their defects are known andwere subject of various previous studies (Moha et al. 2009; Ouni et al.
2012a; Palomba et al. 2013). Table 9 provides some descriptive statistics about these projects.

To collect operations applied in previous program versions, we used Ref-Finder. Table 10
shows the analyzed versions and the number of operations, identified by Ref-Finder, between
each subsequent couple of analyzed versions, after the manual validation.

4.2.2 Parameter tuning

The algorithms have been configured according to the parameters detailed in Table 11.
Different values have been used for the population size and the maximum number of
evaluations, generating a variety of configurations related the projects sizes and the number
of objectives. For the mono-objective EA, we adopted the same approach using best fitness
value criterion since multi-objective metrics cannot be used for single-objective algorithms.

4.2.3 Statistical tests

Since metaheuristic algorithms are stochastic optimizers, they can provide different results for
the same problem instance from one run to another. For this reason, our experimental study is

Table 9 Statistics of the studied systems

Systems Release classes KLOC Code smells

Xerces-J v2.7.0 991 240 82

Azureus v2.3.0.6 1449 264 108

ArgoUML v0.26 1358 283 1358

ArgoUML v0.3 1409 271 1409

Ant-Apache v1.5.0 1024 266 103

Ant-Apache v1.7.0 1839 294 124

GanttProject v1.10.2 245 81 41

JDI-Ford v5.8 638 247 88

Empir Software Eng

Author Preprint

performed based on 31 independent simulation runs for each problem instance and the
obtained results are statistically analyzed by using the Wilcoxon rank sum test (Arcuri and
Fraser 2013) with a 95 % confidence level (α=5 %). The latter verifies the null hypothesis H0
that the obtained results of two algorithms are samples from continuous distributions with
equal medians, against the alternative that they are not H1. The p-value of the Wilcoxon test
corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I error).
A p-value that is less than or equal to α (≤0.05) means that we accept H1 and we reject H0.
However, a p-value that is strictly greater than α (> 0.05) means the opposite. For example, we
compute the p-value obtained by comparing NSGA-II, IBEA, MOEA/D and mono-objective
search results with NSGA-III ones. In this way, we determine whether the performance
difference between NSGA-III and one of the other approaches is statistically significant or
just a random result.

4.2.4 Subjects

Our study involved 11 subjects from the University of Michigan and 5 software engineers
from Ford Motor Company. Subjects include 6 master students in Software Engineering, 4

Table 10 Analyzed versions and
operations collection Systems Collected operation

Previous releases Refactorings

Xerces-J v1.4.2 - v2.6.1 52

GanttProject v1.7 - v1.10.1 113

Azureus v2.1.0.0- v2.3.0.0 146

ArgoUML v0.11.4 - v0.17.2 182

Ant-Apache v1.1.0- v1.4.0 177

JDI-Ford v2.4 – v5.6 97

Table 11 Parameters
configuration Global parameters

2003Population Size 190

Objectives 8

Max Evaluations 1400

Crossover Weight 0.8

Mutation Weight 0.2

Reference Points 156

NSGA-III/Gr-EA parameters

Number of Divisions 4

IBEA parameters

Archive Size 100

MOEA/D parameters

Neighborhood Size 8

Max Replacements 2

H 99

Empir Software Eng

Author Preprint

PhD students in Software Engineering, 1 faculty member in Software Engineering, and 5
junior software developers. 3 of them are females and 8 are males. All the subjects are
volunteers and familiar with Java development. The experience of these subjects on Java
programming ranged from 2 to 14 years. The evaluated solutions by the subjects are those that
represent the maximum trade-off between the objectives using the trade-off worthiness metric
proposed by Rachmawati as described in the previous section.

4.2.5 Scenarios

We designed our study to answer our research questions. The subjects were invited to fill a
questionnaire that aims to evaluate the suggested refactorings. We divided the subjects into 8
groups according to 1) the number of studied systems (Table 9), 2) the number of refactoring
solutions to evaluate, and 3) the number of techniques to be tested.

As shown in Table 12, for each system, several solutions have to be evaluated. In Table 12,
we summarize how we divided subjects into 8 groups. In addition, as illustrated in Table 12,
we are using a cross-validation to reduce the impact of subjects on the evaluation. Each subject
evaluates different refactoring solutions for different systems.

Subjects were first asked to fill out a pre-study questionnaire containing seven questions.
The questionnaire helped to collect background information such as their role within the

Table 12 Survey organization

Subject groups Systems Algorithms / Approaches

Group 1 Xerces-J v2.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant

ArgoUML v0.26 MOEA/D / NSGA-II / GA

Ant-Apach v1.5.0 DBEA-Eps / IBEA / NSGA-II / GA

Group 2 Azureus v2.3.0.6 MOEA/D / JDeodorant / Gr-EA

ArgoUML v0.3 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Ant-Apache v1.7.0 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Group 3 GanttProject v1.10.2 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Xerces-J v2.7.0 MOEA/D / NSGA-II / GA

ArgoUML v0.26 Gr-EA / DBEA-Eps / IBEA / JDeodorant

Group 4 Ant-Apach v1.5.0 MOEA/D / JDeodorant / Gr-EA

Azureus v2.3.0.6 DBEA-Eps / IBEA / NSGA-II / GA

ArgoUML v0.3 MOEA/D / NSGA-II / GA

Group 5 Ant-Apache v1.7.0 MOEA/D / NSGA-II / GA

GanttProject v1.10.2 MOEA/D / NSGA-II / GA

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D

Group 6 ArgoUML v0.3 DBEA-Eps / IBEA / NSGA-II / GA

Ant-Apache v1.7.0 DBEA-Eps / IBEA / NSGA-II / GA

JDI-Ford v5.8 NSGA-II / GA / JDeodorant

Group 7 GanttProject v1.10.2 DBEA-Eps / IBEA / NSGA-II /GA

Xerces-J v2.7.0 DBEA-Eps / IBEA / NSGA-II / GA

JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D

Group 8 JDI-Ford v5.8 Gr-EA / DBEA-Eps / IBEA / MOEA/D /
NSGA-II / GA / JDeodorant

Empir Software Eng

Author Preprint

company, their programming experience, their familiarity with software refactoring. In addi-
tion, all participants attended one lecture of 50 min about software refactoring and passed 10
tests to evaluate their performance to evaluate and suggest refactoring solutions. Then, the
groups are formed based on the pre-study questionnaire and the tests result to make sure that
all the groups have almost the same average skills. Group 8 is composed by only software
engineers from Ford and evaluated only refactoring suggestions for JDI-Ford.

The participants were asked to justify their evaluation of the solutions and these justifica-
tions are reviewed by the organizers of the study (one faculty member, one postdoc and one
PhD student). In addition, our experiments are not only limited to the manual validation but
also the automatic validation can verify the effectiveness of our approach.

Subjects were aware that they are going to evaluate the design coherence and the usefulness
of the suggested refactorings, but do not know the particular experiment research questions
(algorithms used, different objectives used and their combinations). Consequently, each group
of subjects who accepted to participate to the study, received an online questionnaire, a
manuscript guide to help them to fill the questionnaire, and the source code of the studied
systems, in order to evaluate the solutions. The questionnaire is organized in an excel file with
hyperlinks to visualize easily the source code of the affected code elements. Subjects are
invited to select for each operation one of the possibilities: “Yes”, “No”, or “May be” (if not
sure) about the design coherence and usefulness. Since the application of refactroing solutions
is a subjective process, it is normal that not all the programmers have the same opinion. In our
case, we considered the majority of votes to determine if suggested solutions are correct or not.

5 Results and discussions

5.1 Results for RQ1

Figure 3 summarizes the results of median values of the quality improvement metrics over 31
independent simulation runs after applying the proposed operations by the refactoring solution
selected using the knee-point strategy (Bechikh et al. 2011). In our experiments, we used all the 8
objectives in our many-objective formulation. It is clear from Fig. 3 that all the six quality

Fig. 3 Average quality improvements, over 31 runs, on the different systems using NSGA-III

Empir Software Eng

Author Preprint

objectives are improved using our NSGA-III algorithm compared to the program version before
refactoring. The reusability, understandability and extendibility are the most improved metrics
and this can be explained by the fact that refactoring is not expected to change a lot the behavior/
functionality of a system and this explain that some objectives were not improved significantly
such as the functionality improvements metric. The same observation regarding the behavior
preservation is valid for the extendibility factor because it is, to some extent, a subjective quality
factor and using a model of merely static measures to evaluate extendibility is may be not very
good estimator. Overall, the NSGA-III algorithmwas able to find a good trade-off between all the
six quality objectives since most of them were significantly increased and no one of these metrics
were decreased comparing the initial version of the system before refactoring. The variation in
terms of quality improvements between the different systems is not high. ArgoUML and Ant-
Apache were the main systems who are significantly improved and this can be explained by the
lower quality of these projects comparing to the remaining systems before refactoring.

As described in Fig. 4, after applying the proposed refactoring operations by our approach
(NSGA-III), we found that, on average, 82 % of the detected defects were fixed (DCR) for all
the eight studied systems. This high score is considered significant in terms of improving the
quality of the refactored systems by fixing the majority of defects of various types (blob,
spaghetti code, functional decomposition (Moha et al. 2009), god class, data class and feature
envy (Marinescu et al. 2010)).

A closer look to the fixed defects in Xerces-J v2.7.0, the one with the highest percentage of
fixed defects (86 %), is detailed in Table 13.

On Table 13, it is noticeable that some code smells are harder to fix (such as God classes)
compared to others (Feature Envy), further analysis needs to be done to better understand this
observation. Although the bad smell detection literature suggests a wide variety of code smells to be
corrected, we narrowed our selection to the five types that have given significant results compared to
the others. This can be explained by the fact that the defects types that are not fixed require the
considerations of more refactoring operations rather than those included in this work. In addition,
some of these defects are difficult to detect just using structural metrics (Palomba et al. 2013).

We also need to assess the correctness/meaningfulness of the suggested refactorings from
the developers’ point of view. Figure 5 confirms that the majority of the suggested refactorings
improve significantly the code quality while preserving design’s semantic coherence. On
average, for all of our studied systems, an average of around 91 % of proposed refactoring

Fig. 4 Average percentage of fixed defects, over 31 runs, on the different systems using NSGA-III

Empir Software Eng

Author Preprint

operations are considered by potential users to be semantically feasible and do not generate
semantic incoherence.

In addition to the manual evaluation, we automatically evaluate our approach without using the
feedback of potential users to give more quantitative evaluation to answer RQ1. Thus, we compare
the proposed refactorings with the expected ones. The expected refactorings are those applied by
the software development team to the next software release as described in Table 10. We use Ref-
Finder to identify refactoring operations that are applied between the program version under
analysis and the next version. Figure 5 summarizes our results. We found that a considerable
number of proposed refactorings (an average of 59 % for all studied systems in terms of recall) are
already applied to the next version by software development team which is considered as a good
recommendation score, especially that not all refactorings applied to next version are related to
quality improvement, but also to add new functionalities, increase security, fix bugs, etc.

To conclude, we found that our approach produces good refactoring suggestions in terms of
defect-correction ratio, semantic coherence from the point of view of 1) potential users of our
refactoring tool and 2) expected refactorings applied to the next program version.

5.2 Results for RQ2

In this section, we focus first on the comparison between our NSGA-III adaption and other
many-objective algorithms using the same adaptation. Table 14 shows the median IGD values
over 31 independent runs for all algorithms under comparison. We have used pairwise

Table 13 Fixed code smells dis-
tribution in Xerces-J v2.7.0 Code smell Flawed classes Number of fixed

code smells

Blob 143 (32 % overlap) 30 (%89)

Data Class 19 (%83)

God Class 10 (%64)

Feature Envy 25 (%96)

Functional Decomposition 13 (%94)

Spaghetti Code 39 (%92)

Fig. 5 Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the
different systems using NSGA-III

Empir Software Eng

Author Preprint

comparisons, so we do not need to adjust p-values. After applying Cohen’s d effect size we
noticed that the effect size between the pair comparison of NSGA-III with each of the
remaining algorithms is higher than 0.8 except for Gr-EA, which effect values were found
to be medium.

All the results were statistically significant on the 31 independent simulations using the
Wilcoxon rank sum test with a 95 % confidence level (α=5 %). NSGA-III strictly outperforms
NSGA-II and gives slightly better results to those of the other many-objective algorithms. It is
worth noting that for problems formulations with more 3 objectives, NSGA-II performance is
dramatically degraded, which is simply denoted by the~symbol. The performance of NSGA-
III could be explained by the interaction between: (1) Pareto dominance-based selection and
(2) reference point-based selection, which is the distinguishing feature of NSGA-III compared
to other existing many-objective algorithms.

Figure 6 describes value path plots of all algorithms for the 8-objective refactoring problem
on Argo-UML. The horizontal axis shows the objective functions while the vertical axis marks
its related values. The objectives values were normalized between 0 and 1 and set to be
minimized. In terms of convergence, the algorithm whose solutions are closest to the ideal
vector of height zeros has better convergence ratio. Thus, NSGA-III and DBEA-Eps outper-
form the remaining algorithms. Also, the spread of NSGA-III solutions vary in between [0,
0.9] presents a slightly better diversity than its follower DBEA-Eps whose solutions vary in
between [0, 0.85]. On the other hand, the worst convergence is associated to NSGA-II as its
solutions are so far from the ideal vector, and even it diversity is so reduced which may explain
the stagnation of its evolutionary process. We conclude that although NSGA-II is the most
famous multi-objective algorithm in SBSE, it is not adequate for problems involving over 3
objectives and NSGA-III is a very good candidate solution for tackling many-objective SBSE
problems.

Figure 6 Value path plots of non-dominated solutions obtained by NSGA-III, DBEA-Eps,
Gr-EA, IBEA, IBEA, and NSGA-II during the median run of the 8-objective refactoring
problem on ArgoUML v0.26. The X-axis represents the different objectives while the Y-axis
shows the variation of fitness values between [0..0.1]

When using optimization techniques, the most time consuming operation is the evaluation
step. Thus, we studied the execution time of all many/multi-objective algorithms used in our
experiments. Figure 7 shows the average running times of the different algorithms, over 31

Table 14 Median IGD values on 31 runs (best values are in bold and underlined, second best values are in bold)

System NSGA-III Gr-EA DBEA-Eps IBEA MOEA/D NSGA-II

ArgoUML v0.26 4.113×10−3 4.229×10−3 4.206×10−3 4.329×10−3 4.342×10−3 ~

Xerces v2.7 7.998×10−3 8.308×10−3 8.181×10−3 8.399×10−3 8.431×10−3 ~

ArgoUML v0.3 5.499×10−3 5.677×10−3 5.603×10−3 5.712×10−3 5.733×10−3 ~

Ant-Apache v1.5 6.008×10−4 6.256×10−4 6.224×10−4 6.325×10−4 6.333×10−4 ~

Ant-Apache v1.7.0 6.202×10−3 6.412×10−3 6.377×10−3 6.489×10−3 6.539×10−3 ~

Gantt v1.10.2 7.806×10−3 8.002×10−3 7.968×10−3 8.088×10−3 8.101×10−3 ~

Azureus v2.3.0.6 6.933×10−4 7.112×10−4 7.075×10−4 7.191×10−4 7.208×10−4 ~

JDI-Ford 5.748×10−4 6.066×10−4 5.851×10−4 6.294×10−4 6.646×10−4 ~

~ means a large value that is not interesting to show. The results were statistically significant on 31 independent
runs using the Wilcoxon rank sum test with a 95 % confidence level (α=5 %)

Empir Software Eng

Author Preprint

runs, on the ArgoUMLv0.26 system, the largest system in our experiments. It is clear from this
figure that for an 8 objectives NSGA-III is faster than IBEA. This observation could be
explained by the computational effort required to compute the contribution (IGD) of each
solution. In comparison to MOEA/D, MOEA/D is slightly faster than NSGA-III since it does
not make use of non-dominated sorting. Note that the experiments were conducted on a single
machine (i7 – 2.70 GHz, 12.0 GB – DDR3, SSD - 520 MB/s) which may not be the optimal
setting for some of these heuristics that can perform faster in an appropriate distributed or
parallel environment.

We compared also the different search algorithms using metrics related to quality improve-
ments, number of fixed defects, number of generated refactorings and a manual inspection of
the results to check the correctness of the suggested operations. Figure 8 shows that our
NSGA-III algorithm presents the best compromise between the different quality attributes

NSGA-III IBEA

DBEA-Eps MOEA/D

Gr-EA NSGA-II

Fig. 6 Value path plots of non-dominated solutions obtained by NSGA-III, DBEA-Eps, Gr-EA, IBEA, IBEA,
and NSGA-II during the median run of the 8-objective refactoring problem on ArgoUML v0.26. The X-axis
represents the different objectives while the Y-axis shows the variation of fitness values between [0..0.1]

Fig. 7 Average Computational time values on 31 runs on refactoring ArgoUMLv0.26

Empir Software Eng

Author Preprint

among all the other search algorithms. In addition, it is clear that the many-objective algo-
rithms propose a better trade-off in terms of quality improvements than the mono and multi-
objective techniques.

Since it is not sufficient to outperform existing search-based refactoring techniques, we
compared our proposal to a popular design defects detection and correction tool JDeodorant.
We first note that JDeodorant (like mono-objective approaches also) provides only one
refactoring solution, while NSGA-III generates a set of non-dominated solutions. It can be
seen that NSGA-III provides better results than JDeodorant, in average. The main reason can
be related to the fact that JDeodrant provides a template of possible refactorings to apply for
each detected defect but it is difficult to generalize such refactoring solutions since a defect can
have several different refactoring strategies.

Figure 9 confirms that the majority of the suggested refactorings by NSGA-III improve
significantly the code quality while preserving design’s semantic coherence better than
most of the other search algorithms. In addition, we automatically evaluated our approach

Fig. 8 Average quality improvements, over 31 runs, on the different systems

Fig. 9 Average manual and automatic design coherence measures (MP, PR and RE), over 31 runs, on the
different systems

Empir Software Eng

Author Preprint

without using the feedback of potential users to give more quantitative evaluation. Thus,
we compared the proposed refactorings with the expected ones. The expected refactorings
are those applied by the software development team to the next software release as
described in Table 10. Figure 9 confirms the outperformance of NSGA-III comparing to
the remaining techniques.

We evaluated the number of operations (NO) suggested by the best refactoring solutions on
the different systems over 31 runs. Figure 10 presents the code changes score for each algorithm,
calculated by summing the size (number of operations) of each solution assigned to one project,
divided by the number of projects. It is clear that our NSGA-III approach succeeded in suggesting
solutions that do not require high code changes. However, IBEA generated less number of
refactorings than our approach but this can be due to the fact that our technique improved better
the quality comparing to IBEA’s solutions. Thus, it may require higher number of refactorings to
better improve the quality attributes. Another observation is that the number of refactorings
proposed by JDeodorant is lower than the number of refactorings suggested by NSGA-III.
However, the number of defects fixed by NSGA-III is higher than JDeodorant thus it is normal
in this case that NSGA-III generates higher number of refactorings.

5.3 Results for RQ3

We asked the software engineers involved in our experiments to evaluate the usefulness of the
suggested refactorings to apply one by one. In fact, sometimes these operations can improve
the quality and preserve the semantics but developers will consider them as not useful due to
many reasons such as some code fragments are not used/updated anymore or includes some
features that are not important. Figure 11 shows that NSGA-III clearly outperforms existing
work by suggesting useful refactoring operations for developers.

During the survey, the software engineers confirm that the main limitation related to the use
of NSGA-III for software refactoring is the high number of equivalent solutions. However,
found the idea of the use of the Knee point as described previously useful to select a good
solution. We will investigate in our future work different other techniques to select the region
of interest based on the preferences of developers.

Fig. 10 Average suggested number of refactoring operations, over 31 runs, on the different systems

Empir Software Eng

Author Preprint

6 Threats to validity

This section discusses potential threats to the validity of the study related to this work.

6.1 Threats to internal validity

The first threat is related to the variation of correctness and speed between the different groups
when using our approach and other tools such as JDeodorant. In fact, our technique may not be
the only reason for the superior performance because the subjects have different programming
skills and familiarity with refactoring tools. To counteract this, we assigned the developers to
different groups according to their programming experience so as to reduce the gap between
the different groups. Another threat concerns the collected code changes of the studied
systems. In addition to the documented refactorings, we used Ref-Finder, which is known to
be efficient. Indeed, Ref-Finder is able to detect refactoring operations with an average recall
of 95 % and an average precision of 79 % (Kim et al. 2010). To ensure precision, we manually
examined Ref-Finder generated refactorings by randomly selecting a set of detected changes
and evaluating them by the participants in our experiments. We also identified three threats to
internal validity: selection, learning and fatigue, and diffusion.

The selection threat refers to the participating subjects’ profile and experience that could
affect our study. Firstly, the subjects were all volunteers. We also minimized the selection
threat by providing some guidelines and examples of previously evaluated refactorings. In
addition, we also took care to randomize the selection refactorings to be evaluated for each
refactoring solution.

Randomization also helps to prevent the learning and fatigue threats. We also mitigated the
fatigue threat, by sending the questionnaires to the subjects by email and gave them enough
time to complete the tasks.

Diffusion threat is limited because of the geographic distribution of our subjects in two
different universities and a company, and they hardly know each other. For those who are in
the same location, they were asked not to share information about the experience prior to the
completion of the study.

Conclusion validity deals with the relation between the treatment and the outcome. Thus,
we took special care to vary the subjects based on their professional status, university/company

Fig. 11 Average of percentages of useful operations (IR), on the different systems using NSGA-III

Empir Software Eng

Author Preprint

affiliations, gender, and years of experience. In addition, we clustered subjects into balanced
groups. This has been said, we plan to test our tool with Java development companies, to draw
better conclusions. Moreover, the automatic evaluation is also a way to limit the threats related
to subjects as it helps to ensure that our approach is efficient and useful in practice.

6.2 Threats to extremal validity

External validity refers to the generalizability of our findings. In this study, we performed our
experiments on seven different widely-used systems and one industrial system belonging to
different domains and with different sizes. However, we cannot assert that our results can be
generalized to industrial Java applications, other programming languages, and to other practi-
tioners. Future replications of this study are necessary to confirm our findings. Another limitation of
our proposal is the selection of the best solution from the Pareto front. We used the technique of
selecting the solution at the knee point. However, we plan in our future work to more integrate the
preferences of developers to select the best solution from the set of non-dominated solutions.
Another raised threat is due to the limited number of subjects and evaluated systems, which
externally threatens the generalizability of our results. In addition, our study used a limited set of
refactoring operations. Future replications of this study are necessary to confirm our findings.

7 Conclusions and future work

We propose a novel formulation of the refactoring problem as a many-objective problem,
based on NSGA-III, using the quality attributes of QMOOD as objectives along with the
number of refactorings and the preservation of design coherence. This paper represents one of
the first real-world applications of NSGA-III. This initial empirical investigation has shown
that a possible conflict among QMOOD objectives may occur depending on the kind of
employed refactorings. In this context, a statistical analysis needs to be conducted to prove the
validity of this insight. Furthermore, we did not yet prioritize any objective(s) although the
definition of QMOOD and the capability of NSGA-III allows it. It would be interesting to
compare multiple refactored systems, while each one of them is the result of high prioritization
of one quality objective.

We implemented our approach and evaluated it on seven large open source systems and one
industrial project provided by our industrial partner. We compared our findings to: several
other many-objective techniques (IBEA, MOEA/D, GrEA, and DBEA-Eps), a mono-objective
technique and an existing refactoring technique not based on heuristic search. Statistical
analysis of our experiments over 31 runs shows the efficiency of NSGA-III as a powerful
algorithm to tackle many objective formulations.

We also studied the impact of refactoring on fixing code smells. Although we were able to
fix most of the detected defects, our defect selection types were limited due to limited types of
used refactorings. Another limitation to take into account is the possibility of introducing
code smells while performing the refactoring operations, for example, we noticed that
repairing some instances of feature envy led to the introduction of the shotgun surgery
defect. Since the latter type is not covered in this work, it did not affect our DCR, but
it gives a strong indication for further investigation about how to perform refactoring
interactively with the developer, combined with code smell detection, to avoid such
drawbacks.

Empir Software Eng

Author Preprint

For the qualitative evaluation, we were able to show promising results, along with JDeodorant,
which, as a tool, was highly appreciated by the participants because of its simplicity, ease of use and
the possibility to preview changes and visualize entities. Unfortunately, it is limited to four types of
smells.

In future work, multiple research directions are to be taken from some of the previously
mentioned limitations and they are mainly linked to (1) the problem formulation and (2) NSGA-
III tuning. Firstly, investigating the statistical significance of the impact of the refactorings on
internal and external attributes can be an interesting research direction that can help in better
understanding to what extent each refactoring type can affect the existing quality models.
Moreover, code smells can be also described in terms of structural metrics, such statistical
investigation will help in the validation of attributing a subset of refactorings to a known type
of code smell. As for NSGA-III tuning, we will investigate the impact of different parameter
settings on the quality of our results, in particular, the size of the reference set |Zr| can either be
predefined and calculated based on the number of objectives and the number of desired divisions
in the hyper-plane or preferentially introduced by the user. Augmenting the density of the hyper-
plane i.e., increasing the number of used reference points will refine the niche count and thus will
provide solutions with better diversity. Since, in our experiments, we only considered the
predefined size of reference set, we plan in the future to investigate the impact of varying this
parameter on the quality of the generated solutions. Another interesting research direction regards
the prioritization of the code smells to be removed. For example, two candidate solutions extracted
from the Pareto-front may have equivalent fitness function values, but their impact on reducing
code smellsmay vary in terms of the number and types of fixed code smells. So this can be used as
an additional developer preference to compare between given solutions. Moreover, the solution’s
robustness can be also studied as to take into account the uncertainties related to analyzed classes
importance and code smells severities while suggesting refactoring operations. Furthermore, we
plan to work on adapting NSGA-III to additional software engineering problems and we will
perform more comparative studies on larger open source systems. Nevertheless, this extensive
study has shown a direction using NSGA-III to handle as many as 8 objectives in the context of
solving software engineering problems and will remain one of the first studies in which such a
large number of objectives have been considered.

Acknowledgments This work was supported, in part, by the Institute for Advanced Vehicle Systems-Michigan
grant, the UM-Ford Alliance Program and the Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish
Software Engineering Research Centre.

References

Abreu F-B (1995) The MOOD Metrics Set, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Workshop on Metrics, Vol. 95, p. 267

Alshayeb M (2009) Empirical investigation of refactoring effect on software quality. Inf Softw Technol 51(9):
1319–1326

Arcuri A, Fraser G (2013) Parameter tuning or default values? An empirical investigation in search-based
software engineering. Empir Softw Eng 18(3):594–623

Asafuddoula M, Ray T, Sarker R (2013) A decomposition based evolutionary algorithm for many objective
optimization with systematic sampling and adaptive epsilon control. Evol Multi-Criterion Optim 7811:413–427

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol
Comput 19(1):45–76

Bansiya J, Davis C-G (2002) A hierarchical model for object-oriented design quality assessment. IEEE Trans
Softw Eng 28(1):4–17. doi:10.1109/32.979986

Empir Software Eng

http://dx.doi.org/10.1109/32.979986
https://www.researchgate.net/publication/240320678_The_MOOD_metrics_set?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/240320678_The_MOOD_metrics_set?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/202268407_Empirical_investigation_of_refactoring_effect_on_software_quality?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/202268407_Empirical_investigation_of_refactoring_effect_on_software_quality?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/45280500_HypE_An_Algorithm_for_Fast_Hypervolume-Based_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/45280500_HypE_An_Algorithm_for_Fast_Hypervolume-Based_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/245348706_An_Object-Oriented_Design_Quality_Assessment_Model?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/245348706_An_Object-Oriented_Design_Quality_Assessment_Model?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint
Barros M-O (2012) An analysis of the effects of composite objectives in multiobjective software module

clustering. In Proceedings of the 14th annual conference on Genetic and evolutionary computation
(GECCO ’12), T Soule (Ed.). ACM, New York, NY, USA, 1205–1212. Doi: 10.1145/2330163.2330330

Basili V-R (1992) Software modeling and measurement: the Goal/Question/Metric paradigm. Technical Report.
University of Maryland at College Park, College Park, MD, USA

Bechikh, S., Ben Said, L., & Ghedira, K. (2010). Estimating nadir point in multi-objective optimization using
mobile reference points. In Evolutionary computation (CEC), 2010 I.E. congress on (pp. 1-9). IEEE

Bechikh S, Ben Said L, Ghédira K (2011) Searching for knee regions of the Pareto front using mobile reference
points. Soft computing. Soft Comput Fusion Found, Methodologies Appl 15(9):1807–1823

Ben Said L, Bechikh S, Ghédira K (2010) The r-dominance: a new dominance relation for interactive
evolutionary multicriteria decision making. Proc IEEE Trans Evol Comput 14(5):801–818

Bowman M, Briand L-C, Labiche Y (2010) Solving the class responsibility assignment problem in object-
oriented analysis with multi-objective genetic algorithms. Softw Eng, IEEE Trans 36(6):817–837. doi:10.
1109/TSE.2010.70

Brown, W. J., Malveau, R. C., Brown, W. H., and Mowbray, T-J (1998) Anti-Patterns: Refactoring Software,
Architectures, and Projects in Crisis. Wiley, 1st Ed

Chidamber S-R, Kemerer C-F (1994) Ametrics suite for object oriented design. IEEE Trans Softw Eng 20(6):476–493
Colanzi T-E, Vergilio S-R (2012) Applying search based optimization to software product line architectures:

lessons learned. In Proceedings of the 4th international conference on Search Based Software Engineering
(SSBSE’12), Gordon Fraser and Jerffeson T. Souza de (Ed). Springer-Verlag, Berlin, Heidelberg, 259–266.
Doi: 10.1007/978-3-642-33119-0_19

Corazza A, Di Martino S, Maggio V (2012) LINSEN: an efficient approach to split identifiers and expand
abbreviations. In Proceedings of IEEE International Conference on Software Maintenance, pp.233–242

Counsell S, Hierons R-M, Najjar R, Loizou, G, Hassoun Y (2006) The effectiveness of refactoring, Based on a
compatibility testing taxonomy and a dependency graph. Practice and research techniques, In Testing:
Academic and Industrial Conference-Practice and Research Techniques, 2006. TAIC PART 2006.
Proceedings, 181–192

Dean J, Grove D, Chambers G (1995) Optimization of object-oriented programs using static class hierarchy
analysis, Proceedings of the 9th European Conference on Object-Oriented Programming, p.77–101

Deb K (2001) Multiobjective otpimization using evolutionary algorithms. Wiley, New York
Deb K, Jain H (2012) Handling many-objective problems using an improved NSGA-II procedure. In

Proceedings of IEEE Congress on Evolutionary Computation. 1–8
Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point based Non-

dominated sorting approach, part I: solving problems with Box constraints. Evol Comput, IEEE Trans 18(4):
577–601

Deb K, Saxena D-K (2006) Searching for pareto-optimal solutions through dimensionality reduction for certain
large-dimensional multiobjective optimization problems. In Proceedings of IEEE Congress on Evolutionary
Computation. 3353–3360

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II.
In proceedings of. IEEE Trans Evol Comput 6(2):182–197

Deb K, Sundar J, Uday N, Chaudhuri S (2006) Reference point based multi-objective optimization using
evolutionary algorithms. Int J Comput Intell Res (IJCIR’06) 2(6):273–286

di Pierro F, Khu S-T, Savic D-A (2007) An investigation on preference order ranking scheme for multiobjective
evolutionary optimization. Proc IEEE Trans Evol Comput 11(1):17–45

Dig D (2011) A refactoring approach to parallelism. IEEE Softw 28(1):17–22
Du Bois B, Mens T (2003) Describing the impact of refactoring on internal program quality. In International

Workshop on Evolution of Large-scale Industrial Software Applications, 37–48
Du Bois B, Demeyer S, Verelst J (2004) Refactoring—Improving coupling and cohesion of existing code,

Proceedings of the 11th Working Conference on Reverse Engineering. pp. 144–151
Foster S-R, Griswold W-G, Lerner S (2012, June) WitchDoctor: IDE support for real-time auto-completion of

refactorings. In Proceedings of the 34th International Conference on Software Engineering, 222–232
Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring – Improving the Design of Existing Code.

1st ed. Addison-Wesley
Garza-Fabre M, Toscano-Pulido G, Coello Coello C-A, Rodriguez-Tello E (2011) Effective ranking +

speciation = Many-objective optimization, In Evolutionary Computation (CEC), 2011 I.E.
Congress on pp. 2115–2122

Ge X, Murphy-Hill E (2011) BeneFactor: a flexible refactoring tool for eclipse. In Proceedings of the
ACM international conference companion on Object oriented programming systems languages and

Empir Software Eng

http://www.egr.msu.edu/%7Ekdeb
http://dx.doi.org/10.1109/TSE.2010.70
http://dx.doi.org/10.1109/TSE.2010.70
http://dx.doi.org/10.1007/978-3-642-33119-0_19
https://www.researchgate.net/publication/257027042_An_Analysis_of_the_Effects_of_Composite_Objectives_in_Multiobjective_Software_Module_Clustering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/257027042_An_Analysis_of_the_Effects_of_Composite_Objectives_in_Multiobjective_Software_Module_Clustering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/257027042_An_Analysis_of_the_Effects_of_Composite_Objectives_in_Multiobjective_Software_Module_Clustering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224133139_The_r-Dominance_A_New_Dominance_Relation_for_Interactive_Evolutionary_Multicriteria_Decision_Making?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224133139_The_r-Dominance_A_New_Dominance_Relation_for_Interactive_Evolutionary_Multicriteria_Decision_Making?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220070535_Solving_the_Class_Responsibility_Assignment_Problem_in_Object-Oriented_Analysis_with_Multi-Objective_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220070535_Solving_the_Class_Responsibility_Assignment_Problem_in_Object-Oriented_Analysis_with_Multi-Objective_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220070535_Solving_the_Class_Responsibility_Assignment_Problem_in_Object-Oriented_Analysis_with_Multi-Objective_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262399555_Applying_Search_Based_Optimization_to_Software_Product_Line_Architectures_Lessons_Learned?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262399555_Applying_Search_Based_Optimization_to_Software_Product_Line_Architectures_Lessons_Learned?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262399555_Applying_Search_Based_Optimization_to_Software_Product_Line_Architectures_Lessons_Learned?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261416898_LINSEN_An_efficient_approach_to_split_identifiers_and_expand_abbreviations?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261416898_LINSEN_An_efficient_approach_to_split_identifiers_and_expand_abbreviations?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261416898_LINSEN_An_efficient_approach_to_split_identifiers_and_expand_abbreviations?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2509356_Optimization_of_Object-Oriented_Programs_Using_Static_Class_Hierarchy_Analysis?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2509356_Optimization_of_Object-Oriented_Programs_Using_Static_Class_Hierarchy_Analysis?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261304729_Handling_many-objective_problems_using_an_improved_NSGA-II_procedure?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261304729_Handling_many-objective_problems_using_an_improved_NSGA-II_procedure?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261304729_Handling_many-objective_problems_using_an_improved_NSGA-II_procedure?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264387359_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point-Based_Nondominated_Sorting_Approach_Part_I_Solving_Problems_With_Box_Constraints?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264387359_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point-Based_Nondominated_Sorting_Approach_Part_I_Solving_Problems_With_Box_Constraints?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264387359_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point-Based_Nondominated_Sorting_Approach_Part_I_Solving_Problems_With_Box_Constraints?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/228928332_On_Finding_Pareto-Optimal_Solutions_Through_Dimensionality_Reduction_for_Certain_Large-Dimensional_Multi-Objective_Optimization_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/228928332_On_Finding_Pareto-Optimal_Solutions_Through_Dimensionality_Reduction_for_Certain_Large-Dimensional_Multi-Objective_Optimization_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/228928332_On_Finding_Pareto-Optimal_Solutions_Through_Dimensionality_Reduction_for_Certain_Large-Dimensional_Multi-Objective_Optimization_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2526557_A_fast_and_elitist_multi-objective_genetic_algorithm_NSGAII?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2526557_A_fast_and_elitist_multi-objective_genetic_algorithm_NSGAII?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741544_Reference_Point_Based_Multi-Objective_Optimization_Using_Evolutionary_Algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741544_Reference_Point_Based_Multi-Objective_Optimization_Using_Evolutionary_Algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3418906_An_Investigation_on_Preference_Order_Ranking_Scheme_for_Multiobjective_Evolutionary_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3418906_An_Investigation_on_Preference_Order_Ranking_Scheme_for_Multiobjective_Evolutionary_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224206747_A_Refactoring_Approach_to_Parallelism?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2889922_Describing_the_Impact_of_Refactoring_on_Internal_Program_Quality?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2889922_Describing_the_Impact_of_Refactoring_on_Internal_Program_Quality?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4114677_Refactoring_-_Improving_coupling_and_cohesion_of_existing_code?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4114677_Refactoring_-_Improving_coupling_and_cohesion_of_existing_code?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/254041678_WitchDoctor_IDE_support_for_real-time_auto-completion_of_refactorings?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/254041678_WitchDoctor_IDE_support_for_real-time_auto-completion_of_refactorings?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint
applications companion (OOPSLA ’11). ACM, New York, NY, USA, 19–20. Doi: 10.1145/
2048147.2048157

Ge X, Murphy-Hill E (2014) Manual refactoring changes with automated refactoring validation. In Proceedings
of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA,
1095–1105. Doi: 10.1145/2568225.2568280

Harman M (2013) Software Engineering: An Ideal Set of Challenges for Evolutionary Computation, In GECCO
’13, 1759–1760

Harman M, Jones BF (2001) Search-based software engineering. Inf Softw Technol 43(14):833–839
HarmanM, Tratt L (2007) Pareto optimal search based refactoring at the design level. In GECCO’07. 1106–1113
Harman M, Mansouri S-A, Zhang Y (2012) Search-based software engineering: trends, techniques and applica-

tions. ACM Comput Surv (CSUR) 45(1):11
Jaimes A-L, Coello Coello, C-A, Barrientos J-E-U. (2009). Online Objective Reduction to Deal withMany-objective

Problems. In the 5th international conference on Evolutionary Multicriterion Optimization. 423–437
Jain H, Deb K (2014). An evolutionary many-objective optimization algorithm using reference-point based non-

dominated sorting approach, part II: handling constraints and extending to an adaptive approach. In
Proceedings of IEEE Trans Evol Comput 18(4):602–622

Kalboussi S, Bechikh S, Kessentini M, Ben Said L (2013) Preference-based Many-objective Evolutionary
Testing Generates Harder Test Cases for Autonomous Agents, in Proc. 5th International Symposium on
Search-Based Software Engineering 2013 (SSBSE’13), 245–250

Kataoka Y, Notkin D, Ernst M-D, Griswold W-G. (2001) Automated support for program refactoring using
invariants. In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01) 736

Kessentini M, Kessentini W, Sahraoui H, BoukadoumM, Ouni A (2011) Design defects detection and correction
by example. In ICPC’11. 81–90

Kim M, Gee M, Loh A, Rachatasumrit N (2010) Ref-Finder: a refactoring reconstruction tool based on logic
query templates. In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering (FSE ’10). ACM, New York, NY, USA, 371–372. Doi: 10.1145/1882291.1882353

Kremmel T, Kubalík J, Biffl S (2011) Software project portfolio optimization with advanced multiobjective
evolutionary algorithms. Appl Soft Comput 11(1):1416–1426

Kukkonen S, Lampinen J (2007) Ranking-dominance and many-objective optimization. In Proceedings of IEEE
Congress on Evolutionary Computation (CEC), 3983–3990

Lorenz M, Kidd J (1994) Object-oriented software metrics: a practical guide. Prentice-Hall, Inc
Mäntylä L, Vanhanen J, Lassenius C (2003) ATaxonomy and an Initial Empirical Study of Bad Smells in Code.

In Proceedings of the International Conference on Software Maintenance (ICSM ’03). IEEE Computer
Society, Washington, DC, USA, 381–384

Marinescu R (2004) Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. In Proceedings of
the 20th IEEE International Conference on Software Maintenance (ICSM ’04). IEEE Computer Society,
Washington, DC, USA, 350–359

Marinescu R, Ganea G, Verebi I (2010) InCode: continuous quality assessment and improvement. In Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on, 274–275

Martin R-C (2000) Design principles and design patterns. Object Mentor 1:34
Meananeatra P (2012) Identifying refactoring sequences for improving software maintainability. In Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE 2012). ACM,
New York, NY, USA, 406–409. Doi: 10.1145/2351676.2351760

Mkaouer M-W, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014). High Dimensional Search-
Based Software Engineering: Finding Tradeoffs Among 15 objectives for Automated Software
Refactoring using NSGA-III, In Proc. Genetic and Evolutionary Computation Conference
(GECCO’14), 1263–1270

Mkaouer M-W, Kessentini M, Shaout A, Koligheu P, Bechikh S, Deb K, Ouni A (2015) Many-
objective software remodularization using NSGA-III. ACM Trans Softw Eng Methodol (TOSEM)
24(3):17

Moha N, Guéhéneuc Y-G, Duchien L, Le Meur A.-F (2009) DECOR: A Method for the Specification and
Detection of Code and Design Smells. In TSE, vol 12, 20–36

Murphy-Hill E (2006) Improving usability of refactoring tools. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications (OOPSLA ’06). ACM,
New York, NY, USA, 746–747. Doi: 10.1145/1176617.1176705

Ó Cinnéide M, Tratt L, Harman M, Counsell S, Moghadam I-H (2012). Experimental Assessment of Software
Metrics Using Automated Refactoring. In ESEM’12, 49–58

O’Keeffe M-K, Ó Cinnéide M (2008) Search-based refactoring for software maintenance. J Syst Softw 81(4):502–516

Empir Software Eng

http://dx.doi.org/10.1145/2048147.2048157
http://dx.doi.org/10.1145/2048147.2048157
http://dx.doi.org/10.1145/2568225.2568280
http://dx.doi.org/10.1145/1882291.1882353
http://dx.doi.org/10.1145/2351676.2351760
http://dx.doi.org/10.1145/1176617.1176705
https://www.researchgate.net/publication/266656205_Manual_refactoring_changes_with_automated_refactoring_validation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/266656205_Manual_refactoring_changes_with_automated_refactoring_validation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/266656205_Manual_refactoring_changes_with_automated_refactoring_validation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262310715_Software_engineering_An_ideal_set_of_challenges_for_evolutionary_computation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262310715_Software_engineering_An_ideal_set_of_challenges_for_evolutionary_computation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262868005_Search-Based_Software_Engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741085_Pareto_Optimal_Search_Based_Refactoring_at_the_Design_Level?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221228535_Online_Objective_Reduction_to_Deal_with_Many-Objective_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221228535_Online_Objective_Reduction_to_Deal_with_Many-Objective_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264427657_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point_Based_Nondominated_Sorting_Approach_Part_II_Handling_Constraints_and_Extending_to_an_Adaptive_Approach?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264427657_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point_Based_Nondominated_Sorting_Approach_Part_II_Handling_Constraints_and_Extending_to_an_Adaptive_Approach?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/264427657_An_Evolutionary_Many-Objective_Optimization_Algorithm_Using_Reference-Point_Based_Nondominated_Sorting_Approach_Part_II_Handling_Constraints_and_Extending_to_an_Adaptive_Approach?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3929872_Automated_support_for_program_refactoring_using_invariants?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3929872_Automated_support_for_program_refactoring_using_invariants?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221219778_Design_Defects_Detection_and_Correction_by_Example?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221219778_Design_Defects_Detection_and_Correction_by_Example?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221560392_Ref-Finder_A_refactoring_reconstruction_tool_based_on_logic_query_templates?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221560392_Ref-Finder_A_refactoring_reconstruction_tool_based_on_logic_query_templates?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/221560392_Ref-Finder_A_refactoring_reconstruction_tool_based_on_logic_query_templates?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/222819938_Software_project_portfolio_optimization_with_advanced_multiobjective_evolutionary_algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/222819938_Software_project_portfolio_optimization_with_advanced_multiobjective_evolutionary_algorithms?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224301953_Ranking-Dominance_and_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224301953_Ranking-Dominance_and_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4104985_Detection_startegies_Metrics-based_rules_for_detecting_design_flaws?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4104985_Detection_startegies_Metrics-based_rules_for_detecting_design_flaws?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4104985_Detection_startegies_Metrics-based_rules_for_detecting_design_flaws?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224219333_InCode_Continuous_Quality_Assessment_and_Improvement?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224219333_InCode_Continuous_Quality_Assessment_and_Improvement?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/249817247_Design_Principles_and_Design_Patterns?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/241770746_Identifying_refactoring_sequences_for_improving_software_maintainability?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/241770746_Identifying_refactoring_sequences_for_improving_software_maintainability?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/241770746_Identifying_refactoring_sequences_for_improving_software_maintainability?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552506_High_Dimensional_Search-based_Software_Engineering_Finding_Tradeoffs_among_15_Objectives_for_Automating_Software_Refactoring_Using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552506_High_Dimensional_Search-based_Software_Engineering_Finding_Tradeoffs_among_15_Objectives_for_Automating_Software_Refactoring_Using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552506_High_Dimensional_Search-based_Software_Engineering_Finding_Tradeoffs_among_15_Objectives_for_Automating_Software_Refactoring_Using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552506_High_Dimensional_Search-based_Software_Engineering_Finding_Tradeoffs_among_15_Objectives_for_Automating_Software_Refactoring_Using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552713_Many-objective_software_remodularization_using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552713_Many-objective_software_remodularization_using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/265552713_Many-objective_software_remodularization_using_NSGA-III?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/232650234_DECOR_A_Method_for_the_Specification_and_Detection_of_Code_and_Design_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/232650234_DECOR_A_Method_for_the_Specification_and_Detection_of_Code_and_Design_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261075109_Experimental_Assessment_of_Software_Metrics_Using_Automated_Refactoring?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261075109_Experimental_Assessment_of_Software_Metrics_Using_Automated_Refactoring?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint
Olaechea R, Rayside D, Guo J, Czarnecki K (2014) Comparison of exact and approximate multi-objective

optimization for software product lines. In Proceedings of the 18th International Software Product Line
Conference - Volume 1 (SPLC ’14), Stefania Gnesi, Alessandro Fantechi, Patrick Heymans, Julia Rubin,
Krzysztof Czarnecki, and Deepak Dhungana (Eds.), Vol. 1. ACM, New York, NY, USA, 92–101. Doi: 10.
1145/2648511.2648521

Ouni A, Kessentini M, Sahraoui H, Boukadoum M (2012a) Maintainability defects detection and correction: a
multi-objective approach. J Autom Softw Eng 20:47–79

Ouni A, Kessentini M, Sahraoui H A, Hamdi MS (2012) Search-based refactoring: Towards semantics
preservation. ICSM 347–356

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2013) Detecting Bad Smells in
Source Code Using Change History Information. IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE), 268–278

Piveta E-K, Pimenta M-S, Araújo J, Moreira A, Guerreiro P, Price R-T (2006) Detecting bad smells in aspectJ. J
UCS 12(7):811–827

Praditwong K, Harman M, Yao X (2010) Software module clustering as a multi-objective search problem. Softw
Eng IEEE Trans 37(2):264–282. doi:10.1109/TSE.2010.26

Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary algorithm with controllable focus on the knees
of the Pareto front. IEEE Trans Evol Comput 13(4):810–824

Ramírez A, Romero J-R, Ventura S (2014) On the performance of multiple objective evolutionary algorithms for
software architecture discovery. In Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation (GECCO ’14). ACM, New York, NY, USA, 1287–1294. doi: 10.1145/2576768.2598310

Rodriguez D, Ruiz M, Riquelme J-C, Harrison R (2011) Multiobjective simulation optimisation in software
project management. In Proceedings of the 13th annual conference on Genetic and evolutionary computation
(GECCO ’11), Natalio Krasnogor (Ed.). ACM, New York, NY, USA, 1883–1890

Sarro F, Ferrucci F, Gravino C (2012) Single and Multi Objective Genetic Programming for software develop-
ment effort estimation. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC
’12). ACM, New York, NY, USA, 1221-1226. Doi: 10.1145/2245276.2231968

Sayyad A, Menzies T, Ammar H (2013) On the value of user preferences in search-based software engineering: a
case study in software product lines. In ICSE ’13. 492–501

Sayyad A-S, Ingram J, Menzies T, Ammar H (2013) Scalable product line configuration: A straw to break the
camel’s back, Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
vol., no., pp.465–474, 2013. doi: 10.1109/ASE.2013.6693104

Seng O, Stammel J, Burkhart D (2006) Search-based determination of refactorings for improving the class
structure of object-oriented systems. In GECCO’06. 1909–1916

Shatnawi R, Li W (2011) An empirical assessment of refactoring impact on software quality using a hierarchical
quality model. Int J Softw Eng Appl 5(4):127–149

Singh H-K, Isaacs A, Ray T (2011) A Pareto corner search evolutionary algorithm and dimensionality reduction
in many-objective optimization problems. Proc IEEE Trans Evol Comput 99:1–18

Tahvildari L, Kontogiannis K, Mylopoulos J (2003) Quality-driven software re-engineering. J Syst Softw 66(3):
225–239. doi:10.1016/S0164-1212(02)00082-1

Thiele L, Miettinen K, Korhonen P-J, Luque J-M (2009) A preference-based evolutionary algorithm for multi-
objective optimization. Evol Comput 17(3):411–436

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: Identification and Removal of Type-Checking
Bad Smells. In Proceedings of the 2008 12th European Conference on Software Maintenance and
Reengineering (CSMR ’08). IEEE Computer Society, Washington, DC, USA, 329–331. Doi: 10.1109/
CSMR.2008.4493342

Van Emden E, Moonen L (2002) Java Quality Assurance by Detecting Code Smells. In Proceedings of the Ninth
Working Conference on Reverse Engineering (WCRE ’02). IEEEComputer Society,Washington, DC, USA, 97

Wada H, Champrasert P, Suzuki J, Oba K (2008, July) Multiobjective optimization of sla-aware service
composition. In Services-Part I, 2008. IEEE Congress on, 368–375 doi: 10.1109/SERVICES-1.2008.77

Wang R, Purshouse R-C, Fleming P-J (2013) Preference-inspired coevolutionary algorithms for many-objective
optimization. Proc IEEE Trans Evol Comput 17(4):474–494

Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. Evol
Comput, IEEE Trans 17(5):721–736

Yao X (2013) Some Recent Work on Multi-objective Approaches to Search-Based Software Engineering In Proc.
5th Symp. on Search Based Software Engineering (SSBSE), vol. 8084, 4–15

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. Proc IEEE
Trans Evol Comput 11(6):712–731

Empir Software Eng

http://dx.doi.org/10.1145/2648511.2648521
http://dx.doi.org/10.1145/2648511.2648521
http://dx.doi.org/10.1109/TSE.2010.26
http://dx.doi.org/10.1145/2576768.2598310
http://dx.doi.org/10.1145/2245276.2231968
http://dx.doi.org/10.1109/ASE.2013.6693104
http://dx.doi.org/10.1016/S0164-1212(02)00082-1
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/SERVICES-1.2008.77
https://www.researchgate.net/publication/235924378_Maintainability_Defects_Detection_and_Correction_A_Multi-Objective_Approach?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235924378_Maintainability_Defects_Detection_and_Correction_A_Multi-Objective_Approach?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235924392_Search-based_Refactoring_Towards_Semantics_Preservation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235924392_Search-based_Refactoring_Towards_Semantics_Preservation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276655_Detecting_bad_smells_in_source_code_using_change_history_information?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276655_Detecting_bad_smells_in_source_code_using_change_history_information?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276655_Detecting_bad_smells_in_source_code_using_change_history_information?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224111742_Software_Module_Clustering_as_a_Multi-Objective_Search_Problem?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224111742_Software_Module_Clustering_as_a_Multi-Objective_Search_Problem?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224580117_Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224580117_Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/263469071_On_the_Performance_of_Multiple_Objective_Evolutionary_Algorithms_for_Software_Architecture_Discovery?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/263469071_On_the_Performance_of_Multiple_Objective_Evolutionary_Algorithms_for_Software_Architecture_Discovery?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/263469071_On_the_Performance_of_Multiple_Objective_Evolutionary_Algorithms_for_Software_Architecture_Discovery?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741866_Multiobjective_simulation_optimisation_in_software_project_management?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741866_Multiobjective_simulation_optimisation_in_software_project_management?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220741866_Multiobjective_simulation_optimisation_in_software_project_management?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235705952_Single_and_Multi_Objective_Genetic_Programming_for_software_development_effort_estimation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235705952_Single_and_Multi_Objective_Genetic_Programming_for_software_development_effort_estimation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/235705952_Single_and_Multi_Objective_Genetic_Programming_for_software_development_effort_estimation?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261192670_On_the_value_of_user_preferences_in_search-based_software_engineering_A_case_study_in_software_product_lines?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261192670_On_the_value_of_user_preferences_in_search-based_software_engineering_A_case_study_in_software_product_lines?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276549_Scalable_product_line_configuration_A_straw_to_break_the_camel's_back?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276549_Scalable_product_line_configuration_A_straw_to_break_the_camel's_back?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/261276549_Scalable_product_line_configuration_A_straw_to_break_the_camel's_back?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220743540_Search-Based_Determination_of_Refactorings_for_Improving_the_Class_Structure_of_Object-Oriented_Systems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/220743540_Search-Based_Determination_of_Refactorings_for_Improving_the_Class_Structure_of_Object-Oriented_Systems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/286804954_An_empirical_assessment_of_refactoring_impact_on_software_quality_using_a_hierarchical_quality_model?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/286804954_An_empirical_assessment_of_refactoring_impact_on_software_quality_using_a_hierarchical_quality_model?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224214406_A_Pareto_Corner_Search_Evolutionary_Algorithm_and_Dimensionality_Reduction_in_Many-Objective_Optimization_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224214406_A_Pareto_Corner_Search_Evolutionary_Algorithm_and_Dimensionality_Reduction_in_Many-Objective_Optimization_Problems?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/222537224_Quality-driven_software_re-engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/222537224_Quality-driven_software_re-engineering?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/26768807_A_Preference-Based_Evolutionary_Algorithm_for_Multi-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/26768807_A_Preference-Based_Evolutionary_Algorithm_for_Multi-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4330227_JDeodorant_Identification_and_Removal_of_Type-Checking_Bad_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4330227_JDeodorant_Identification_and_Removal_of_Type-Checking_Bad_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4330227_JDeodorant_Identification_and_Removal_of_Type-Checking_Bad_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4330227_JDeodorant_Identification_and_Removal_of_Type-Checking_Bad_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2540963_Java_Quality_Assurance_by_Detecting_Code_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/2540963_Java_Quality_Assurance_by_Detecting_Code_Smells?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4358900_K_Multiobjective_Optimization_of_SLA-Aware_Service_Composition?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/4358900_K_Multiobjective_Optimization_of_SLA-Aware_Service_Composition?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/260621912_Preference-Inspired_Coevolutionary_Algorithms_for_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/260621912_Preference-Inspired_Coevolutionary_Algorithms_for_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/253348620_A_Grid-Based_Evolutionary_Algorithm_for_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/253348620_A_Grid-Based_Evolutionary_Algorithm_for_Many-Objective_Optimization?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3418989_MOEAD_A_Multiobjective_Evolutionary_Algorithm_Based_on_Decomposition?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/3418989_MOEAD_A_Multiobjective_Evolutionary_Algorithm_Based_on_Decomposition?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint
Zhuang L, HeQing G, Dong L, Tao H, Juan Juan Z (2007) Solving Multi-Objective and Fuzzy Multi-Attributive

Integrated Technique forQoS-AwareWebService Selection, InWirelessCommunications, Networking andMobile
Computing, 2007. WiCom 2007. International Conference on, 735–739 doi: 10.1109/WICOM.2007.190

Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search Parallel Problem Solving from
Nature. In Parallel Problem Solving from Nature-PPSN VIII, 832–842, Springer: Berlin Heidelberg

Mohamed Wiem Mkaouer is currently a PhD candidate in Software Engineering at University of Michigan-
Dearborn, USA, under the supervision of Dr. Marouane Kessentini. His research interests include software
quality, software testing, model-driven engineering and search-based software engineering. He is a member of the
Search-based Software Engineering at Michigan research group, he is also a student member of the IEEE and the
IEEE Computer Society.

Marouane Kessentini is a tenure-track assistant professor at the Computer and Information Science department,
University of Michigan, Dearborn campus. He is the founder of the research group: Search-based Software
Engineering@Michigan. He holds a Ph.D. in Computer Science, University of Montreal (Canada), 2011. His
research interests include the application of artificial intelligence techniques to software engineering (search-
based software engineering), software testing, model-driven engineering, software quality, and re-engineering.
He has published around 70 papers in conferences, workshops, books, and journals including three best paper
awards. He has served as program-committee/organization member in several conferences and journals.

Empir Software Eng

http://dx.doi.org/10.1109/WICOM.2007.190
https://www.researchgate.net/publication/224288908_Solving_Multi-Objective_and_Fuzzy_Multi-Attributive_Integrated_Technique_for_QoS-Aware_Web_Service_Selection?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224288908_Solving_Multi-Objective_and_Fuzzy_Multi-Attributive_Integrated_Technique_for_QoS-Aware_Web_Service_Selection?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/224288908_Solving_Multi-Objective_and_Fuzzy_Multi-Attributive_Integrated_Technique_for_QoS-Aware_Web_Service_Selection?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/216457303_Indicator-Based_Selection_in_Multiobjective_Search?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/216457303_Indicator-Based_Selection_in_Multiobjective_Search?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==
https://www.researchgate.net/publication/216457303_Indicator-Based_Selection_in_Multiobjective_Search?el=1_x_8&enrichId=rgreq-fec3afc9cdbcc1facecf7e8a8296bb0a-XXX&enrichSource=Y292ZXJQYWdlOzI4Nzk3MjcyOTtBUzozMTAxMDM3MzM5MzIwNDNAMTQ1MDk0NTkwMDQxNA==

Author Preprint

Slim Bechikh received the BSc degree in computer science applied to management and the MSc degree in
modeling from the University of Tunis, Tunisia, in 2006 and 2008, respectively. He also obtained the PhD degree
in computer science applied to management from University of Tunis in January 2013. He worked, for four
years, as an attached researcher within the Optimization Strategies and Intelligent Computing lab (SOIE),
Tunisia. Now, he is a postdoctoral researcher at the SBSE@Michigan, University of Michigan. His research
interests include multi-criteria decision making, evolutionary computation, multi-agent systems, portfolio opti-
mization and search-based software engineering. Since 2008, he published several papers in well-ranked journals
and conferences. Moreover, he obtained the best paper award of the ACM Symposium on Applied Computing
2010 in Switzerland among more than three hundreds participants. Since 2010, he serves as reviewer for several
conferences such as ACM SAC and GECCO and various journals such as Soft Computing and IJITDM.

Mel Ó Cinnéide graduated in Computer Science from University College Cork, and then spent several years
working in the software industry, initially with Philips in the Netherlands and later with Motorola in Cork. After
this period in industry, he lectured in University College Cork while completing an MSc in the area of automated
analysis and improvement of C++ inheritance hierarchies. He completed his PhD dissertation in the University of
Dublin in 2001 on the topic of automated application of design patterns using refactorings, and is currently a
member of academic staff in the School of Computer Science, University College Dublin. His present research
interests centre around refactoring, and especially the use of search-based software engineering in automated
refactoring. Related interests include design patterns, software metrics and code smell detection.

Empir Software Eng

Author Preprint

Professor Kalyanmoy Deb is Koenig Endowed Chair Professor at Electrical and Computer Engineering in
Michigan State University, USA. Prof. Deb’s research interests are in evolutionary optimization and their
application in optimization, modeling, and machine learning. Prof. Deb has numerous awards and honours in
his name, including the prestigeous Shanti Swarup Bhatnagar Prize in Engineering Sciences in 2005, ‘Thomson
Citation Laureate Award’, an award given to an Indian Researcher for making most highly cited research
contribution during 1996-2005 in a particular discipline according to ISI Web of Science, Friedrich Wilhelm
Bessel Research Award and Humboldt Fellowship from Alexander von Humboldt Foundation, Germany. He is a
fellow of Indian National Science Academy (INSA), Indian National Academy of Engineering (INAE), Indian
Academy of Sciences (IASc), and International Society of Genetic and Evolutionary Computation (ISGEC). He
has been awarded ‘Distinguished Alumnus Award from his Alma mater IIT Kharagpur in 2011. Author of more
than 275 research papers, two textbooks, 17 edited books, his 2001 book on Evolutionary Multiobjective
Optimization Algorithms is the first ever compilation of multiobjective optimization algorithms. Because of
his pioneering research in the field of evolutionary multi-objective optimization (EMO), he has been invited to
present 35 Keynote lectures and more than 100 invited lectures and tutorials on the topic. His NSGA-II paper
from IEEE Trans. on Evolutionary Computation (2000) is judged as the Fast-Breaking Paper in Engineering by
ESI Web of Science and now this paper is awarded the ‘Current Classic’ and ‘Most Highly Cited Paper’ by
Thomson Reuters. He is fellow of IEEE and three science academies in India. He has published 350+ research
papers with Google Scholar citation of 55,000+ with h-index 77. He is in the editorial board on 20 major
international journals. More information about his research can be found from http://www.egr.msu.edu/~kdeb.

Empir Software Eng

 to publications on ResearchGate. to publications on ResearchGate.

http://www.egr.msu.edu/%7Ekdeb

	On the use of many quality attributes for software refactoring: a many-objective search-based software engineering approach
	Abstract
	Introduction
	Background and related work
	Software refactoring
	Many-objective search-based software engineering

	Adapting NSGA-III for the software refactoring problem using quality attributes
	NSGA-III
	Problem formulation
	QMOOD model quality attributes as objectives
	Number of code changes as an objective
	Design coherence preservation as an objective

	Solution approach
	Solution representation
	Solution variation
	Solution evaluation
	Normalization of population members
	Final solution selection

	Design of the empirical study
	Research questions
	Experimental setting
	Software systems
	Parameter tuning
	Statistical tests
	Subjects
	Scenarios

	Results and discussions
	Results for RQ1
	Results for RQ2
	Results for RQ3

	Threats to validity
	Threats to internal validity
	Threats to extremal validity

	Conclusions and future work
	References

