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ABSTRACT

Continuous Integration (CI) aims at supporting developers in inte-
grating code changes quickly through automated building. How-
ever, there is a consensus that CI build failure is a major barrier
that developers face, which prevents them from proceeding further
with development. In this paper, we introduce BF-DETECTOR, an
automated tool to detect CI build failure. Based on the adaptation
of Non-dominated Sorting Genetic Algorithm (NSGA-II), our tool
aims at finding the best prediction rules based on two conflicting
objective functions to deal with both minority and majority classes.
We evaluated the effectiveness of our tool on a benchmark of 56,019
CI builds. The results reveal that our technique outperforms state-
of-the-art approaches by providing a better balance between both
failed and passed builds. BF-DETECTOR tool is publicly available,
with a demo video, at: https://github.com/stilab-ets/BF-Detector
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1 INTRODUCTION

Continuous integration (CI) [10] is a set of software development
practices that are widely adopted in industry and open source
environments [32]. It consists of continuously integrating code
changes into a shared repository branch, by automating the process
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of building and testing [12], which improves the productivity [17]
and reduces the cost and risk of delivering defective changes [32].
However, despite its valuable benefits, CI brings its own challenges.
Hilton et al. [16] revealed that build failure is a major barrier that
developers face when using CI. In fact, CI build failure prevents de-
velopers from proceeding further with development, as it requires
an immediate action to resolve it. In addition, the build resolution
may take hours or even days to complete, which severely affects
both, the speed of software development and the productivity of
developers [2]. Such challenges motivated researchers and prac-
titioners to develop Machine Learning (ML) based techniques for
preemptively detecting when a software state is most likely to trig-
ger a failure when built. Although these works have advocated
that predicting CI build outcome is possible and beneficial, none of
them accommodated for the imbalanced distribution of the success-
ful and failed classes when building their prediction models. This
challenges their applicability due to the performance bias that can
occur when an imbalanced distribution of class examples is used in
the learning process [5].

As an alternative to ML techniques, Multi-Objective Genetic Pro-
gramming (MOGP) [22, 35] was proposed to promote the diversity
between solutions equally on both minority and majority classes
and thus allowing the imbalanced training data to be used directly
in the learning process without relying on sampling techniques to
re-balance the data [6, 7]. This advocates that MOGP approaches
are more suitable for binary classification tasks with imbalanced
data [5]. Recently, in [28, 29] we proposed a MOGP technique to
predict CI build failure based on the adaption of the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [9] with a tree-based solu-
tion representation. The idea is to generate prediction rules from
historical data of CI builds using two competing objectives in the
learning process to handle both passed and failed builds.

In this paper, we present a tool, called BF-DETECTOR (Build Fail-
ure Detector), that applies our MOGP technique based on our pre-
vious work [29]. The tool is very lightweight and can be easily
integrated with Travis CI [8]. Our tool was built to work with this
system, since it is one of the most popular CI services [31]. In a nut-
shell, our tool takes as input, a given build, calculates a set of metrics
that are fed into the prediction rule, previously generated using the
history of builds, and returns the prediction outcome (i.e.whether
the build is likely to pass or fail) as well as a justification for the
prediction.

To evaluate the performance of BF-DETECTOR, we conducted an
empirical study on a benchmark composed of 56,019 build instances


https://github.com/stilab-ets/BF-Detector
https://doi.org/10.1145/3468264.3473115
https://doi.org/10.1145/3468264.3473115

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

from 10 open source projects that use the Travis CI system. We
compare our predictive performance to three widely-used ML tech-
niques namely Random Forest, Decision Tree and Naive Bayes. The
statistical results reveal that our tool advances the state-of-the-art
by achieving median score of 68% in terms of AUC (Area Under
The Curve) compared to 61% achieved by existing ML techniques
for which we applied re-sampling.

2 RELATED WORK

The analysis of CI build failure is growing as an active and chal-
lenging topic for software engineering research. Rausch et al. [27]
investigated the impacts that can affect build failure on Travis CI.
They observed by analyzing build logs that the most common rea-
sons for build failures are failing integration tests, code quality
measures being below a required threshold, and compilation errors.
Luo et al. [20] found that the total number of commits in a build is
the main influence feature that causes build failure. The number of
files changed and the density of tests also impact a lot.

Recently, various research efforts have focused on studying CI
build failure in order to cut off the expenses of CI build failure.
Hassan and Wang [15] proposed a prediction model of CI build
outcome on three build systems, namely Ant, Maven and Gradle,
under the cross-project prediction and cross-validation scenarios
by adopting Random Forest (RF). Xia et al. [34] conducted an em-
pirical study to evaluate the predictive performance of six common
classifiers including RF, NB and DT under cross-project validation.
According to the results of their experiments, they found that DT
classifier performs the best. In another paper, Xia and Li [33] com-
pared nine ML models to construct CI prediction models. Their
experiments were based on both cross-validation and online scenar-
ios. In cross-validation, their models achieved an Area Under the
ROC Curve (AUC) score of over 70%. However, under the online
scenario, they observed a tendency for their prediction scores to
decrease up to 60% of AUC. In both scenarios, they found that DT
and RF achieved the best performance scores. Recently, Saidani et al.
[28, 29] proposed a customized MOGP-based approach to predict
CI build failure. The proposed approach learns rule-based models
from world instances of failed and succeeded builds while han-
dling both minority and majority classes. Results show that MOGP
outperforms various baseline ML techniques in terms accuracy.

Related efforts [1, 2] were proposed to speed up CI build process
by detecting which commits are not necessary to trigger the build
process. In this paper, we believe that BF-DETECTOR could be used
jointly with these techniques to provide better support to CI de-
velopers while reducing CI build costs and enhancing developer’s
experience in CI environments.

3 BF-DETECTOR ARCHITECTURE

Figure 1 provides an overview of our tool to predict the CI build
outcome. We start from the observation that it is more beneficial
for CI developers to identify good practices to follow in order to
avoid build failure rather than simply detecting whether the build
will succeed or fail. Our BF-DETECTOR tool takes as input (1) an
URL which can be the path to the GIT folder if the project is locally
available, or the GitHub repository URL; the list of commits to be
built (separated by #); and an option to launch the cross-project

Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer

prediction. Next, the build information is extracted (2). First, the
tool extracts the history of builds (history_builds.csv file). Our
tool generates also the features of the current build to be saved
in an input_build_inf.csv file. In case the user opts for within-
project prediction (3.a) (i.e., using the build information of the input
project), then BF-DETECTOR uses the Search-based Training module
to generate the predictive rule that should provide a high accuracy
for both failed and passed builds.

* Path to GIT folder/GitHub URL

o *  List of build commits (to be predicted)
l *  Cross-project option (True/False)

BF-Detector =

!

Build information Extraction

. HTML Parser with
Jsoup and Selenium

input_build_inf.csv

a=]

10

history builds.csv

=

dot

Search-based Training

i

(Adaptation of NSGA-II)
MOEA framework

Within-project Prediction
Cross-project Prediction
[ PDF |

Explained CI build
failure detection

16

within-project rule.dot

[

Tl &
i

(I
a
2

Cross-project rules

Figure 1: Architecture and workflow of BF-DETECTOR.

This rule is saved as the file within-project rule.dot. Once
this file is created, it can be loaded each time the tool is triggered,;
which allows to save time. If the cross-project option is selected (3.b),
the tool loads a set of rules (i.e., Cross-project rules) generated
previously based on real examples of build information extracted
from TravisTorrent dataset [4]. At the prediction level and depend-
ing on the selected option, the system uses the prediction rule(s)
and checks whether the features of the input commits respond to
the conditions of the rule. Finally, the recommendation is returned
to the user along with an explanation to justify the prediction (4). In
the following subsections, we provide more details of each module.

3.1 Build Information Extraction

Before generating the features of the project, BF-DETECTOR first
extracts the build records. Since no tool is available to get the CI
builds, we parse the corresponding web-page of the CI system to get
such information. Indeed, CI systems such as Travis CI [8] provide
development teams with detailed information about the builds ID,
outcome, built commits and the date. In our tool, the build data
crawling and extraction is based on the Java HTML Parser Jsoup
[18] which is a Java library that parses HTML pages and collects
the elements of interest (e.g., CSS selectors).
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A tag to indicate the build outcome

RWTH-i5-IDSG / steve

build 'passing

Current  Branches  Build History  Pull Requests B #14

/ master make Data field in DataTransferForm a textarea (c - #1435 passed

Commit d2fddee

Compare 9f357a3. .d2fddoe

Ran for 7 min 15

Total time 21 mir

<h3 class="build-status |passed|> <a href="/github/RWIH-i5-
IDSG/steve/builds/I768344172” id="emberl40" class="active

ember-view"> <span e="Triggered by a push"
id="emberl4l" cl push passed ember-view"> </a> </h3>

Build ID

<a rel="noopener noreferrer" target="_blank"
href="https://github.com/RWIH-1i5-
IDSG/steve/commit/d2fdd0e0bc8dfa731f54b2e461a51fec780393£3
" id="emberl20" class="
aria-describedby="too

r-view ember-tooltip-target"
P_Jjdgdjwb25x" title=""> </a>

Link to the built commit

Figure 2: Example showing how to extract information about builds, using Jsoup, from RWTH-15-1IDSG/steve GitHub repository.

Taking the project RWTH-15-IDSG/steve as an example, Figure
2 shows how BF-DETECTOR can extract information about the build
with ID = 768344172 ! using Jsoup.

To simulate the interaction with the CI system web site, we use
Selenium Web driver [30]. This toolkit allows to create a automated
browser instance (e.g., Google Chrome) to simulate human actions
such as clicking or page scrolling.

Once the build information is extracted, BF-DETECTOR mines the
CI related features to be used for the build failure detection. Such
information is gathered by mining the Git repository. To interact
with Git, we rely on the Java library JGit [11].

The full list of the used metrics can be found in the tool’s web-
page https://github.com/stilab-ets/BF-Detector.

3.2 Search-Based Training

Our adaptation to the NSGA-II algorithm [9] is to adopt it follow-
ing a tree-like representation instead of fixed length linear string
formed from a limited alphabet of symbols. In our problem formu-
lation, a candidate solution, i.e., a prediction rule, is represented as
an IF-THEN clause which describes the conditions under which a
build is said to be succeeded or failed [3, 19, 23-26]. The condition
corresponds to a logical expression that combines some metrics
and their threshold values using logical operators (OR, AND). A
solution is encoded as a tree where each terminal belongs to the set
of predefined CI related metrics (extracted from literature) and their
corresponding thresholds are generated randomly. Each internal-
node belongs to the connective set C = {AND, OR}. All the generated
solutions are evaluated using two objectives to (1) maximize the
true positive rate (TPR), and (2) minimize the false positive rate
(FPR). Change operators are applied, at every iteration, to gener-
ate new solutions. After repeating this process until reaching a
stop criteria, the best solution i.e.prediction rule is returned by the
algorithm.

It is worth to mention that in our BF-DETECTOR tool, NSGA-II
is implemented using the MOEA framework [13], an open source
framework for developing and experimenting with Multi-Objective
Evolutionary Algorithms (MOEAs) [14].

Thttps://travis-ci.org/github/RWTH-i5-IDSG/steve/builds/768344172

3.3 Within-Project Prediction

This option is generally selected when the project contains enough
data to feed the search-based training module. After the genera-
tion/loading of the detection rule, our tool analyzes the changes
made in the input commits to determine whether the build is likely
to fail or pass.

3.4 Cross-Project Prediction

When the project does not have enough training data (e.g., small or
new project), this does not prevent it from using our tool. Indeed,
BF-DETECTOR generates, based on TravisTorrent dataset [4], a set
of optimal detection rules that can be loaded to predict the current
CI build outcome. Thereafter, all the outputs of these rules are
combined to a single detection model using majority voting. If the
majority of rules predict the build as failed, then it is predicted as
failed and the best rule will be displayed.

3.5 Prediction Justification

The final step in BF-DETECTOR’s workflow is to provide an explained
recommendation to the user in order to guide him in his decision
to (not) build the committed changes. In Figure 3, we provide an
example of a prediction justification. The red circle indicates a non-
satisfied condition while the green one indicates that the input
commit(s) properties satisfy the condition. When the root node
(in this example it is OR) is green, this means that the committed
changes are predicted to fail.

3.6 BF-DETECTOR Usage

BF-DETECTOR is implemented as a command line-based tool that
is available as a standalone Java jar file in order to facilitate its
integration within CI frameworks. BF-DETECTOR can be executed
via the following command:

java -jar BF-Detector.jar <Path to Git repository>
<list of commits hashes separated by # ><T/F>
The jar file can be downloaded from https://github.com/stilab-
ets/BF-Detector.

4 PERFORMANCE EVALUATION

We conducted an empirical study on the effectiveness of
BF-DETECTOR based on TravisTorrent dataset [31], from which


https://github.com/stilab-ets/BF-Detector
https://travis-ci.org/github/RWTH-i5-IDSG/steve/builds/768344172
https://github.com/stilab-ets/BF-Detector
https://github.com/stilab-ets/BF-Detector

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

D OR \AND
N

EXP <=1875 FilesD >=5

=
( AND

Figure 3: An simplified example of justification.

docF <=1

we selected 10 Java projects (after removing builds with "error"/
"canceled" status) as reported in Table 1.

Table 1: Studies projects statistics.

Project Name # of Builds ;:iu(l;) A(g;aa;ts)CI
CloudifySource/cloudify 4,568 25 220
gradle/gradle 3,822 8 1,833
Graylog2/graylog2-server 3,341 12 470
mitchellh/vagrant 3,569 14 765
openMF/mifosx 2,252 7 2
opf/openproject 5,913 35 287
rails/rails 11,732 30 2,354
rapid7/metasploit-framework 6,391 7 2,571
ruby/ruby 11,814 21 5,099
SonarSource/sonarqube 2,317 24 1,013
Average 5,602 19 1,461

We evaluate our predictive performance against ML techniques
namely Random Forest (RF), Decision Tree (DT) and Naive Bayesian
(NB). To validate the predictive performance, we consider online
validation in which builds are ordered and predicted chronologically
[33]. Table 2 reports the detection results for balance [21] and Area
Under the ROC Curve (AUC) scores. These metrics assess how
well a model/rule performs on the minority and majority classes.
Note that NSGA-II, RF and DT were executed 1,000 times for each
experimentation instance to deal with their stochastic nature.

Overall, BF-DETECTOR achieves an average AUC of 69% and
an average balance of 66%. Moreover, we observe from Table 2
that for the 10 studied projects, the best AUC and balance values
were achieved by the BF-DETECTOR. On the other hand, for the
different projects, the statistical analysis provides evidence that our
approach performs better than the ML techniques. For instance,
in the Graylog2/graylog2-server project in which the number
of failed builds represent only 12%, our approach achieved 71% in
terms of AUC compared to 58% for NB, 56% for RF and 52% for
DT which represents an improvement of 13% over ML. Also, in
mitchellh/vagrant project, in which we obtained the best results,
our approach outperforms ML techniques by achieving 78% in
terms of AUC compared to 69%, 63% and 60% for RF, NB and DT,
respectively.

Based on these results, we can conjecture that our tool performs
better in comparison with ML techniques even without need for
features scaling or relying on any re-sampling technique. This could
be justified by the fact that NSGA-II had a better trade-off (i.e., bal-
ance and AUC) between both positive (i.e., failed) and negative (i.e.,
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passed) accuracies, which indicates that our approach is advanta-
geous over ML when developing prediction rules for imbalanced
datasets.

Table 2: Performance of BF-DETECTOR vs ML techniques.

Project AUC Balance
& &
«‘v& «@é
Q@ 9@

DRI RN
cloudify 0.67 055 0.62 056 | 0.65 043 047 041
gradle 0.69 050 062 0.61]| 0.67 042 051 0.54
graylog2-server 0.71 0.52 056 0.58 | 0.67 041 0.41 0.46
metasploit-framework 0.68 0.49 0.60 0.47 | 0.63 0.44 0.54 0.32
mifosx 0.75 062 0.64 046 | 0.72 053 0.55 036
openproject 0.64 0.52 0.54 053] 0.63 050 045 047
rails 0.61 0.55 058 0.60 | 0.56 044 0.47 0.50
ruby 0.72 0.58 0.71 050 | 0.69 056 0.68 0.31
sonarqube 0.65 053 058 054 0.64 050 049 045
vagrant 0.78 0.60 0.69 0.63 | 0.75 0.53 0.60 0.59
Median 0.68 0.54 0.61 0.55 066 047 050 0.46
Average 0.69 0.55 061 0.55 066 048 052 0.44

5 APPLICABILITY OF BF-DETECTOR

For CI Practitioners. We envisage our tool being used by develop-
ers, in their daily CI workflow to check whether their changes will
break the build. The key innovation of our tool is that it is able to
provide an explainable prediction model, and also some modalities
to be respected in order to avoid build failure. Another benefit of
using BF-DETECTOR is that it can save the learning rule to be used
for the prediction or updated later when more data is available over
time as the project evolves.

For Researchers. Our explainable prediction of build outcome
can be used as a starting point to prepare or recommend retro-
action plans to fix the failed build. Thus, such valuable information
may encourage researchers to develop automated build failure fix
approaches, which is indeed one of our future research works.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced BF-DETECTOR a new command-line
based tool for CI build failure detection. We described the archi-
tecture of BF-DETECTOR, its usage scenarios, and its applicability
by developers and researchers. We evaluated our tool based on
a benchmark of 56,019 CI builds of ten projects that use Travis
CIL Considering online validation, the statistical analysis of the
obtained results provides evidence that our approach outperforms
three Machine Learning (ML) techniques.

Our future work includes upgrading our tool to support other
CI systems. We also plan to integrate another module to allow
dynamic update of the generated rules when more data is available
over time, i.e., after a given number of builds, or generalized among
other projects.
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