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Abstract. JavaScript has become one of the widely-used languages. However,
as the size of JavaScript-based applications grows, the number of defects grows
as well. Recent studies have produced a set of manually defined rules to identify
these defects. We propose, in this work, the automation of deriving these rules to
ensure scalability and potentially the detection of a wider set of defects without
requiring any extensive knowledge on rules tuning. To this end, we rely on a base
of existing code smells that is used to train the detection rules using Genetic
Programming and find the best threshold of metrics composing the rules. The
evaluation of our work on 9 JavaScript web projects has shown promising results
in terms of detection precision of 92% and recall of 85%, with no threshold tuning
required.

1 Introduction

JavaScript (JS) has been revolutionizing the web by combining services, libraries, and
services from various third party providers. It was initially born to exclusively serve as
a scripting standard at the browser level but it has drastically expanded to take over the
lead in managing web N-tier architectures and as a result, 98% of the most visited
websites incorporate JS [1]. The popularity of JS is issued from its dynamically-typed
nature [2] and the wide variety of features it can quickly and dynamically include on the
fly [3]. On the other hand, dynamically-typed languages, in general, have proven to be
difficult to analyze, and thus, their catalog of development supporting tools suffers, and
JavaScript is no exception [4]. With the rapid growth of JS applications in terms of size,
rich interpolated functionalities at the expense of complexity and the lack of tools
support, it is becoming a maintenance nightmare of developers [5]. Just like any other
language, JS suffers from bad programming decisions, known as code smells [6], that
can be introduced during the initial software development or during adding new features
or applying debugging patches. The existence of code smells indicates the poor software
quality and it increases the risk of introducing bugs. With the fact that JS is an interpreted
language, the absence of a compiler that may raise warnings about potential runtime
errors, adding to that the ability to include more code on the runtime through prototyping
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makes it hard to maintain a defect-free JS code base [7]. So code smells detection can
be seen as a preventive task to minimize the number of bugs.

Unlike Object-Oriented (OO) languages, in which code smell detection and correc‐
tion have been widely studied in the literature, there isn’t much work tackling these
smells in JS for various reasons, for instance, JS naturally does not necessarily comply
with object oriented design rules, although it supports their implementation, further‐
more, the lack of modeling support for JS prevents the automated identification of any
high-level design anti-patterns. Still, several studies have approached the detection of
bad development behavior in JS, in which, the most developed family of tools is for
static analysis of programs, mostly for detecting very low-level errors in the code.
Although tools such as JSLint [8], and JSHint [9] are great for syntactical issues like
missing semi-colons and enforcing organizational policy, they do not support the high-
level detection of structural defects within the source code that may not be as obvious.

The main challenge of detecting code smells in JS is the inability of statically calcu‐
late structural measurements e.g., coupling and cohesion, which can be combined to
create code smells detection rules. To capture these interaction properties between JS
objects, static analysis has to be augmented with dynamic analysis. On the flipside,
dynamic analysis is more costly in terms of time and performance, also, in many state‐
ments and dependencies cannot be analyzed at runtime until triggered by a given input
or scenario. Still, various studies have been conducted in the context of dynamic analysis
to detect type inconsistencies [10], event related [11] cross-browser testing [12] and
code smell detection [13]. The latter work labeled JSNOSE [13] extracts a set of static
metrics from the static analysis of JS objects and monitor their behavior during the
application runtime. Using this combination, it uses the rule-based approach to identify
high-level disharmonies, which are similar to a subset of the code smells that exist in
literature, as well as smells that exist specific to JavaScript. In addition, JSNOSE allows
developers to extend the list of possible smells to detect. In this approach, rules are
manually defined to identify the key symptoms that characterize a code-smell using a
set of limited quantitative metrics. However, in a more concrete setting, the number of
possible code-smells to manually characterize with rules can be large. Moreover, for
each code-smell, rules that are expressed in terms of metrics require continuous cali‐
bration efforts to find the right threshold especially in a highly dynamic environment
like JS.

To cope the above-mentioned limitations, we propose in this paper the automated
tuning of code-smells detection rules using a dataset of existing code-smells. The process
aims at finding, for each JS object, a subset of similar objects in the base of examples,
then, using this subset of objects with their known smells, we use the Genetic Program‐
ming to tune the threshold of quantitative metrics in order to maximize the coverage of
the detected smells in the subset. These calibrated metrics will be later on used to detect
smells in JS. The evaluation of our work on 9 JS web projects has shown promising
results in achieving a detection of a subset of JS smells that were reported by JSNOSE
with 92% precision, with no metrics tuning needed.

The remainder of this paper is structured as follows. Section 2 provides the back‐
ground required to understand our approach and the challenges in detecting code-smells
in JS. In Sect. 3, we describe our approach and show how we deployed a GP to tune
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metrics that will be used for the smells detection. Section 4 presents and discusses the
results obtained by comparing our approach with JSNOSE. Related work is discussed
in Sect. 5, while in Sect. 6 we conclude and suggest future research directions.

2 Background and Problem Statement

After nearly two decades since code smells were introduced by Fowler [6], there is no
consensus on how to standardize the definition of code smells. Several studies have been
characterizing smells by their symptoms at the source code level that are be measured
by structural metrics [14] or using history of code changes [15] or even using textual
information extracted from the code base internal and external documentation [16]. It
is to note that dynamic analysis was not solicited in the detection process mainly due to
its complexity and also because static analysis offers a rich catalog of metrics that be
used to create detection rules. However, this does not apply to JS. JS revolution in the
last decade was driven by the dynamic manipulation of the Document Object Model
(DOM) and XML objects under several web protocols [17]. The tremendous growth of
JS web application has negatively impacted their maintenance especially with the prop‐
agation of the JS technology to become the leading language for servers and web data‐
bases [18]. In this context, Mesbah et al. [13] discovered the existence of traditional
code smells in JS and clustered them into “classic” smells that are derived from the
literature and “JS-specific” smells that identify exclusive bad programming patterns in
JS. Since we aim at using the knowledge from existing smells detection literature, this
paper will only focus on detecting the first type of the smells. Table 1 summarizes the
code smells detected by JSNOSE and studied in this work.

Table 1. Detection Rules for JS code smells [13].

Code smell Level Detection rule Structural metrics
Many global
variables

File GLB > 10 GLB: Number of global
variables
NOP: Number of properties
LOC: Lines of code
MLOC: Method lines of code
PAR: Number of parameters
BUR: Base-Object usage ratio
NOC: Number of cases

Large object Object LOC > 750 OR
NOP > 20

Lazy object Object NOP < 3
Long method Method MLOC > 50
Long parameter list Method PAR > 5
Refused Bequest Object BUR < 1/3 AND

NOP > 2
Switch statement Method NOC > 3

Although JSNOSE has given promising results, it suffers from scalability issues as
the application of the above-mentioned rules requires the manual calibration of thresh‐
olds which tends to be subjective, human intensive and error prone. Furthermore,
previous detection studies resulted in several approximations of each smell in terms a
set of metrics that be deployed to its identification and addressing this limitation by
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asking the developers to redefine their own rules is difficult as it needs an extensive
knowledge about analysis and requires qualitative validation.

Recent studies [19, 20] have been investigating how developers rely on OO meth‐
odology when designing their JS code-base and have demonstrated the existence of OO-
like structures and code-elements in JS [21]. Therefore, the main contribution of this
paper is driven by the following research question: How to consider the existing knowl‐
edge in detecting bad programming practices in OO languages in the detection similar
practices in JS. A straightforward approach would be to deploy existing detection tech‐
niques, defined for OO, to JS, but the detection process relies essentially on a profound
static analysis that allows the definition of smells using a rich set of structural metrics,
which are limited in the context of JS. Our contribution relies essentially on exploiting
the similarity between JS and Java in order to identify smelly JS elements if they are
similar to smelly Java elements. Also, we propose to address the above-mentioned limi‐
tations of JSNOSE by automatically generating thresholds for detection rules. Moreover,
the base of smells examples can be generated using any developer-preferred existing
detection tool in order to tune the rules to detect similar-smells in JS.

3 Approach Overview

The general workflow of this approach is decomposed into 4 main stages as shown
Fig. 1. The 4 stages are described in this Section.

(1) JS entities enumeration. Our approach, built upon JSNOSE, inputting the web
app, containing JS files, to the crawler. Once JS files extracted and parsed, the set
of extracted JS Entities, called JSE, (e.g., objects, properties) is sent to the Similarity
Calculator.

(2) Similar Elements extraction. This module takes as input JS entities and code
elements from existing software systems. The purpose of this process is to extract
code elements that are mostly similar in terms of structural properties, this set of
similar extracted elements is labeled SEE. To avoid the exhaustive comparison
between JS entities with all the code elements from the code base, which can
become easily large, we apply an initial matching between them as follows [19]
(Table 2):

Then for each pair of entity/code element, we calculate their structural similarity.
We consider this process similar to structural code clone detection and we extend
this existing metric-based technique [22] that identifies exact elements by loosening

Table 2. Initial mapping between JS entities and code elements

Code
element

JS entity

Class File/Object
Attribute Property
Method Function/Inner function
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this exactitude to a certain threshold. Let MX = <m1(X), …, mn(X)> be the set of
metrics characterizing the entity X; mi(X) (i = 1 … n) stands for the i-th software
metric chosen to describe X, and n is a fixed number metrics describing the entities.
Any other entity Y is considered similar to X with threshold α iff:

Sim(X, Y) =

n∑
i=1

||mi(X) − mi(y)
|| <

n∑
i=1

𝛼i (1)

In order to automatically approximate α for each metrics, we use the box-plot tech‐
nique to select near lower bound of the values space. Using these values, for each
JS entity a subset of code elements will be traced.

(3) Metrics thresholds calibration. The purpose of this step is to update the thresholds
of JS detection rules. To do so, we first extract the smelly elements, called SmellyE,
from SEE. The detection of those elements can be done with any state-of-art detec‐
tion tool, in this study we used infusion to detect smelly elements in our base of
example projects. Also, this detection process may be done prior to running the
calibration algorithm for performance purposes. Once the set of SmellyE is known,
for each smell type a detection rule is generated. Therefore, for each generated rule,
the metrics used by JSNOSE undergo the calibration process by inputting them in
a tree structure. the tuning process aims in tuning metrics thresholds in order to
maximize the number of detected smells in SmellyE, this way, the tuned rule can
be used later on to detect smells in JS.

Fig. 1. Approach overview.

Solution Representation. Since our aim is to only tune thresholds for given rules, the
individual initial setup was seeded with JSNose built in rules.

Solution Evaluation. The GP Initially takes as input the list of code elements, which
were previously selected based on their similarity with a given JS entity. Initially, the
calibrator tests whether a subset of elements contain smells. If the elements are smell
free then the subset will be discarded and no calibration needed. Otherwise, the code
smell types will be sorted based on their occurrence and the most occurring smell type
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triggers the GP’s evolutionary process of tuning its metrics’ thresholds. The fitness
function used evolves the rule towards maximizing the detection of the infected elements
in SmellyE, the set of identified smells is labeled DSmellyE.

Solution Evolution. Since the rules structure was not to change, the crossover was not
solicited. Also, the uniform subtree mutation [23] was constrained to act exclusively on
nodes with values and the function was only allowed to update the value by randomly
adding or subtracting a randomly selected number between 0 and 1. After several gener‐
ations, once the stopping criterion is met, the best solution i.e., a rule with the best
detection ranking is then sent to back to JSNose to be used for the detection process.
The following table gives a summary of the terminals used in the GP algorithm (Table 3).

Table 3. GP Terminology.

Term Definition
JSE Set of JS extracted entities, subject to smell investigation
SEE Set of extracted elements from existing projects as they exhibit a strong

structural similarity with the elements in JSE
SmellyE Subset of JSE that are infected with code smells
DSmellyE Subset of SmellyE that were identified by the detection rule

The following pseudo-code highlights the adaptation of GP for the problem of
detection rules generation.

Algorithm1. Metrics calibration using GP for each smell type
Input: Subset of JSE, infected with code smells (SmellyE)
Input: Metrics (R)
Output: Detection rule
1: Create a random Population (P) of Individuals (I)
2: Randomly create a rule using metrics I rule(R)
3: repeat

4: for all I ∈P do
5: DSmellyE I.executeRule(SmellyE)
6: I.fitness DSmellyE SmellyE
7: end for
8: BestIndividual Rank(P, BestIndividual)
9: P reproducePopulation(P)
10:
11: generation generation+1;
12: until generation = maxGeneration
13: return BestIndividual

(4) Code Smells Detection. The GP returns an updated detection rule, for any smell type
that was known in the subset of code elements. This rule is then executed to report any
JS entities that their properties do not violate the updated metrics thresholds.
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4 Initial Evaluation Study

4.1 Research Questions

We defined two research questions to address in our experiments.

RQ1: What is the detection performance of the auto-tuned rules in the detection of
several JS smell types?

RQ2: What is the impact of the base of examples’ size on the finding code elements
with similar properties to the JS entities and how similar are the tuned rules to
the ones defined by JSNose?

To answer RQ1, we assess the performance of our detection process by its ability to
replicate the detected smells by JSNOSE for the same given projects. To do so, we run
JSNose to re-generate the code smells that we consider as expected. Then we run our
approach to generating our suggested smells. These expected and suggested smells are
used to calculate the precision and recall as follows:

PRprecision =
| suggested smells ∩ expected smells|

|suggested smells|
∈ [0, 1] RCrecall =

| suggested smells ∩ expected smells|
|expected smells|

∈ [0, 1] (2)

For RQ2 we want to study the impact of varying the size of the dataset on the
performance of the similarity process. We also illustrate the results by manually veri‐
fying a set of the reported JS entities.

4.2 Experimental Setting

To build our dataset of example, we randomly sampled 100 small to early medium open
source projects. We limited the size of our projects files based on our initial observation
that the average size of the JS projects is small. The sampled projects were 61 Java
Projects and 39 C++ projects, this helps in diversifying the set of examples especially
that C++ is not purely object oriented. To detect smells within the dataset, we used two
state-of-art code smell detectors namely InCode [14] and PMD [24]. To reduce the cost
of parsing several projects, we performed the detection process prior to running the GP
and saved the results (Code elements, their metrics and the list of infected ones) on
separate log files1. We tried selecting the projects previously used in JSNose as the JS
smells were manually validated on that study. We couldn’t locate two of the projects. It
is also to note that the TinyMCE project is still under continuous development and its
size has increased compared to when it was tested using the original experiment of
JSNose. Since the previously used releases were not mentioned and the number of added
smells is relatively low, we included it in our benchmark (Table 4).

1 For replication purposes, the dataset and tools used are located in: https://github.com/mkaouer/
Code-Smells-Detection-in-JavaScript.
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Table 4. Projects constituting the benchmark for our approach.

Systems Number of JS files JS LOC Number of infected JS
entities

PeriodicTable 1 71 23
CollegeVis 1 177 53
ChessGame 2 198 64
Tunnel 0 234 54
GhostBusters 0 278 49
FractalViewer 8 1245 212
PhotoGallery 5 1535 221
TinySiteCMS 13 2496 172
TinyMCE 191 26908 59

During this study, we use the same parameter setting for all executions of the GP.
The parameter setting is specified in Table 5.

Table 5. Parameter tuning for GP.

GP parameter Values
Population size/Max tree depth 50/2
Selection/Survival/K Roulette-Wheel/K-Tournament/2
Mutation/Mutation rate/Range Uniform-Sub-tree/0.1/[0…1]
Max iterations 1000/2500/5000

4.3 Results and Discussions

As an answer to RQ1, Table 6 reports the results of the empirical qualitative evaluation
of the tuned detection rules in terms of precision and recall.

It is observed in Table 6 that our GP algorithm was able in most cases to replicate
the results of JSNose. For reporting a high number of global variables, GP and JSNose
performed the same except for PeriodicTable project, which GP’s acceptance threshold
was lower than JSNose. Since Global variables are highly discouraged especially in OO
programs, having 6 global variables in PeriodicTable was considered high. For the large
object defect, it is to note that, JSNose has not reported any instance for the GhostBusters
and PhotoGallery project which was not the case for GP, since, in relational program‐
ming, several classes and files have the blob behavior, it is most likely to find several
functions condensed in one entity and this increases the chance of detecting them as
large entities. For the lazy object, GP has missed several smells that were reported by
JSNose mainly in projects with limited size. However, in larger projects, GP reported
more smells than JSNose. Both algorithms have almost agreed on the long method, long
parameter list and refused bequest smells, this was expected especially that the definition
of these smells that was adopted by JSNose matches the exact same rules used by InCode
[14] since the authors of JSNose tuned the exact subtree, previously proposed by the
authors of InCode. It can be also seen that; in general, the recall was usually lower than
the precision for the small-sized JS projects while the precision was mostly lower for
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the projects which were larger like TinySiteCMS and TinyMCE. This induces that GP
tends to be stricter on smaller projects while its rules become less selective. To better
understand if this is due to the random sampling of the projects or due to the number of
similar code elements that were selected during the training of GP rules, we conducted
thought of tuning the rules with only smells that existed different releases within the
same project. During multiple releases of a software, several features are added, bugs
are fixed and refactorings conducted, this induces several changes in the software struc‐
ture and any smell that would survive throughout these changes can be considered
persistent. To do so, we picked, for each project, 4 previous releases and we conducted
the same static analysis to generate all the structural metrics and we analyzed them with
PMD and infusion, then we ruled out all the smells that didn’t exist throughout the total
of 5 releases. Then we re-conducted threshold of our rules. The following Fig. 2 shows
the comparison of tuning with one release for each project (GP1R) with the one with 5
releases (GP5R).

As observed in Fig. 2, GP5R has increased the recall score of rules with multiples
metrics (e.g., lazy object, refused bequest) and this can be explained by the fact that
tuning the threshold with fewer but persistent smells makes the detection harder and
fewer fittest rules evolve during the GP. On the other hand, the precision of GP5R for
refused bequest has reduced.

For RQ2, Fig. 3 shows that the number of existing projects in this study has provided
enough elements that are structurally similar to the JS elements under analysis. In
general, it was easier to quickly find functions with equivalent size and number of
parameters and the similarity has converged into an acceptable range earlier compared
to the objects and files; it was harder to find similar classes in terms of number of lines
of code and number of properties and functions, especially that the JS projects sizes were

Table 6. Median values of precision and recall for the JS code smells in 9 JS web projects over
31 runs. Differences are highlighted

Software

Many global 
variables

Large
object

Lazy
object

Long 
method

Long 
parameter list

Refused 
Bequest

Switch 
statement

Median per 
Project

GP
(+/-)

JSNose
(+/-)

PRE
(%)

REC 
(%)

PRE
(%)

REC
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC
(%)

PeriodicTable + - 1 0.25 1 0.40 1 1 1 1 1 1 1 1 1 0.77

CollegeVis + + 1 1 1 0.37 1 0.5 1 1 1 1 1 1 1 0.81

ChessGame + + 1 0.77 1 0.55 1 1 1 1 1 1 1 1 1 0.88

Tunnel + + 1 1 1 0.59 1 1 1 1 1 1 1 1 1 0.93

GhostBusters - - 0 0 1 0.65 1 1 1 0.33 1 1 1 1 0.83 0.66

FractalViewer + + 1 0.71 1 1 0.83 1 1 0.80 1 0.93 1 1 0.97 0.90

PhotoGallery + + 0 0 1 1 1 1 1 1 1 1 1 1 0.83 0.83

TinySiteCMS + + 1 0.77 0.86 1 1 1 0.51 1 1 1 1 1 0.89 0.96

TinyMCE - - 0.60 1 0.78 1 1 1 0.44 1 1 0.77 1 0.66 0.80 0.94

Median per 
Smell

N/A N/A 0.73 0.61 0.96 0.72 0.98 0.94 0.88 0.90 1 0.93 1 0.96 0.92 0.85
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relatively small and so is for the projects that were also small and thus the number of
classes was limited per project.

Fig. 3. Impact of the number of projects on the similarity between JS entities and code elements.

To illustrate the similarity between JS smells and the ones in the base of examples
we extracted some JS smell instances and an equivalent selected code element from the
base of examples with a smell instance.

As shown in Fig. 4, an object to be instantiated can be exceedingly large and often
the object has many properties and functions that distinguish it as a code smell. Notice
how it is logical to group the properties that are defined by lines 2 to 6. They are funda‐
mental to the image entity. Lines 7 through 18 are really about effects, and so it may
make sense to encapsulate these properties into their own object, perhaps called Image‐
Effects, and then include the object as a dependency within Image. As the code stands
in the figure, the Image object is concerned about the properties of a text that the user
may add while editing. Good software engineering practices suggest to separate

Fig. 2. Median values of precision and recall of GP1R and GP5R for the JS code smells in 9 JS
web projects over 31 runs.
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concerns, and so it would also make sense to also encapsulate text properties into their
own object. This smell is similar to the blob classes which are characterized by being
data-driven highly cohesive and standalone objects (no inheritance and rare coupling).

Large object detected in PhotoGallery Blob class detected in JVacation 

Fig. 4. JS Large object smell.

As shown in Fig. 5, a long parameter list is a straightforward to detect code smell,
it is an important smell to fix because of two reasons. First, the long list of parameters
hurts the understandability of the code and so developers will experience difficulty in
capturing the method’s behavior. Even if the name of the method implies that the image
will be rotated, but why are there so many parameters? What does makeCopy have to
do with rotating an image? Clearly, this adds some confusion if a developer is not
familiar with the function. And it can result in confusion even to someone who wrote
the method but needs to revisit it in order to modify the behavior. Secondly, having so
many parameters could potentially indicate that the method has assumed more than one
responsibility as it has evolved over time. It is often simpler, and easier for developers
to quickly add another parameter, and then create a ‘special case’, or a typical branch
of execution for the respective arguments in order to tailor the method to new require‐
ments. This is where smells become introduced over the lifetime of an application in
either JS or any other language. Having such a long list of parameters like in the
constructor in Fig. 5 makes its invocation difficult as well.

Fig. 5. Long parameter list smell seen in JS function rotateImage and Java constructor
TourOperator
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Refused Bequest in an object-oriented language such as Java refers to any class that
extends some parent/base class but does neither use or override a reasonable amount of
the base class’s behavior nor uses a reasonable amount of its properties. In JavaScript,
the concept is slightly different but it can still be applied. JavaScript is class-free but it
uses prototype-based inheritance. That is, object A can share properties from another
object, B, the prototype. As shown in this figure, there is a JSON object created called
photo. That object has some simple information about the image’s owner, a date, as well
as data about how the photo was developed. Another object is created that uses this photo
object as its prototype, meaning it has access and shares the same properties like stop‐
BathTime. However, the Instagram object adds a new member to itself, filter, and only
uses one of the original properties from the photo object. The Instagram objects use of
the photo object’s properties does not justify its extension. Similarly, DBConnector class
extends DBFactory but defines its own attribute and two functions without really using
any of the properties of its parent class. Both situations can be detected through a low
value of the base-object usage ratio metric (Fig. 6).

Fig. 6. Refused bequest smell seen in JS function Instagram and Java class DBConnector

5 Related Work

The detection of code smells on software systems has been the subject of several studies
over the past decade since their first introduction by Fowler and Beck [6]. They described
22 code smells as structural code flaws that may decrease the overall software quality
and serve as indicators of software vulnerabilities. To cope with these smells, Fowler
has introduced a set of 72 Refactoring operations to fix code smells and thus improving
the system overall design. The detection process can either be manual, semi-automated
or fully automated. Van Emden and Moonen developed one of the first automated code-
smell detection tools for Java programs [25]. Mäntylä et al. [26] provided an initial
formalization of the code smells, in terms of metrics, based on analyzing Fowler’s smells
description, they studied the correlation between the smells and provided a classification
according to their similarity. Marinescu et al. [27] presented an automated framework
for smells identification using detection strategies which are defined by metric-based
rules. Moha et al. [28] presented a semi-automated technique called DECOR. This
framework allows subjects to manually suggest their own defects through their descrip‐
tion with domain specific language, then the framework automatically searches for
smells and visually reports any finding. Most of the above-mentioned work focus mainly
on smells specification in order to automate their detection without taking the develo‐
per’s opinion in the detection process. To better incorporate the developer’s preference,
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Kessentini et al. [29] suggested a by-Example approach that uses a base of previously
detected code smells as a base of examples to generate user-oriented detection rules.
This work was extended [30] to reduce the effort of the detection and correction process.
The main limitation of the by-Example approach is the requirement of a large base of
examples (manually detected and validated code smells) for each code smell type, this
work does not rely on the use of a manually validated database of JS code smells exam‐
ples, instead, any project can be used as a training through the automated generation of
its smells instances using any detection tool.

6 Threats to Validity

In our experiments, we raise multiple construct threats that are related to the random
sampling of the projects that belong to the base of examples, we mitigated this threat by
selecting projects from two languages that both support object oriented concepts and
their size was proportional to the size range of the JS projects. Also, the types of smells
that exist in the base of examples represents another threat. We have used two state of
the art and very popular detection tools that are known for their accuracy and also they
are being cited by the authors of JSNOSE. We take into account the internal threats to
validity in the use of stochastic algorithms since our experimental study is performed
based on 31 independent simulation runs for each problem instance and the obtained
results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confi‐
dence level (α = 5%). Another threat is raised through the lack of metrics that may better
capture the structure and properties of elements. As part of our future work, we are
investigating the use of dynamic analysis to capture the call graphs of objects and records
their afferent and efferent communications to be able to approximate their coupling and
cohesion scores.

7 Conclusion and Future Work

The paper introduces a novel detection of the JS code-smells using classic smelly exam‐
ples that are extracted from existing C++ and Java projects. The purpose of this paper
was to automate the tuning of JS detection rules in order to avoid human intervention
and to also take achieve example-like detection that benefits from the maturity of existing
studies. This tuning has required the extension of a specific similarity function to identify
structurally similar entities between JS and the elements extracted from the base of
examples. The tuning process was done by GP that has taken as input the JS detection
rules that have been evolving to detect the expected smells in the extracted subset of
elements. The evaluation of this work has shown promising results that have proven the
capability of our approach to replicate the results of JSNose with 92% precision.

We are planning as future work to extend the base of code smells and identify popular
method-level defects such as feature envy and shotgun surgery, to do so, it is necessary
to extend the base of metrics used to define the rules as measures like coupling, cohesion
and complexity are mandatory to accurately detect those smells. This will require further
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investigation on how to measure these metrics on JS dynamic environment. We also
plan on extending the evaluation to incorporate front end and back end JS projects.
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